St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robust and efficient adaptive multigrid solver for the optimal control of phase field formulations of geometric evolution laws

Thumbnail
View/Open
Venkataraman_2016_CiCP_RobustMultigrid_AAM.pdf (2.864Mb)
Date
01/2017
Author
Yang, Feng Wei
Venkataraman, Chandrasekhar
Styles, Vanessa
Madzvamuse, Anotida
Keywords
QA75 Electronic computers. Computer science
QC Physics
T-DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We propose and investigate a novel solution strategy to efficiently and accurately compute approximate solutions to semilinear optimal control problems, focusing on the optimal control of phase field formulations of geometric evolution laws. The optimal control of geometric evolution laws arises in a number of applications in fields including material science, image processing, tumour growth and cell motility. Despite this, many open problems remain in the analysis and approximation of such problems. In the current work we focus on a phase field formulation of the optimal control problem, hence exploiting the well developed mathematical theory for the optimal control of semilinear parabolic partial differential equations. Approximation of the resulting optimal control problem is computationally challenging, requiring massive amounts of computational time and memory storage. The main focus of this work is to propose, derive, implement and test an efficient solution method for such problems. The solver for the discretised partial differential equations is based upon a geometric multigrid method incorporating advanced techniques to deal with the nonlinearities in the problem and utilising adaptive mesh refinement. An in-house two grid solution strategy for the forward and adjoint problems, that significantly reduces memory requirements and CPU time, is proposed and investigated computationally. Furthermore, parallelisation as well as an adaptive-step gradient update for the control are employed to further improve efficiency. Along with a detailed description of our proposed solution method together with its implementation we present a number of computational results that demonstrate and evaluate our algorithms with respect to accuracy and efficiency. A highlight of the present work is simulation results on the optimal control of phase field formulations of geometric evolution laws in 3-D which would be computationally infeasible without the solution strategies proposed in the present work.
Citation
Yang , F W , Venkataraman , C , Styles , V & Madzvamuse , A 2017 , ' A robust and efficient adaptive multigrid solver for the optimal control of phase field formulations of geometric evolution laws ' , Communications in Computational Physics , vol. 21 , no. 1 , pp. 65-92 . https://doi.org/10.4208/cicp.240715.080716a
Publication
Communications in Computational Physics
Status
Peer reviewed
DOI
https://doi.org/10.4208/cicp.240715.080716a
ISSN
1815-2406
Type
Journal article
Rights
© 2016, Global Science Press. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.cambridge.org / https://doi.org/10.4208/cicp.240715.080716a
Description
All authors acknowledge support from the Leverhulme Trust Research Project Grant (RPG-2014-149). The work of CV, VS and AMwas partially supported by the Engineering and Physical Sciences Research Council, UK grant (EP/J016780/1). This work (AM) has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642866. The work of CV is partially supported by an EPSRC Impact Accelerator Account award. The authors (FWY, CV, VS, AM) thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme (Coupling Geometric PDEs with Physics for Cell Morphology, Motility and Pattern Formation; EPSRC EP/K032208/1). AM was partially supported by Fellowships from the Simons Foundation.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10909

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter