St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved power for TB phase IIa trials using a model-based pharmacokinetic-pharmacodynamic approach compared with commonly used analysis methods

Thumbnail
View/Open
Gillespie_2017_JAC_IIaTrials_CC.pdf (274.3Kb)
Date
01/08/2017
Author
Svensson, Robin J.
Gillespie, Stephen H.
Simonsson, Ulrika S. H.
Funder
European Commission
Grant ID
Keywords
Tuberculosis
Clinical trials
Pharmacology
Mathematical modelling
Drug development
RA0421 Public health. Hygiene. Preventive Medicine
RS Pharmacy and materia medica
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Background : The demand for new anti-TB drugs is high, but development programmes are long and costly. Consequently there is a need for new strategies capable of accelerating this process. Objectives : To explore the power to find statistically significant drug effects using a model-based pharmacokinetic–pharmacodynamic approach in comparison with the methods commonly used for analysing TB Phase IIa trials. Methods : Phase IIa studies of four hypothetical anti-TB drugs (labelled A, B, C and D), each with a different mechanism of action, were simulated using the multistate TB pharmacometric (MTP) model. cfu data were simulated over 14 days for patients taking once-daily monotherapy at four different doses per drug and a reference (10 mg/kg rifampicin). The simulated data were analysed using t-test, ANOVA, mono- and bi-exponential models and a pharmacokinetic–pharmacodynamic model approach (MTP model) to establish their respective power to find a drug effect at the 5% significance level. Results : For the pharmacokinetic–pharmacodynamic model approach, t-test, ANOVA, mono-exponential model and bi-exponential model, the sample sizes needed to achieve 90% power were: 10, 30, 75, 20 and 30 (drug A); 30, 75, 245, 75 and 105 (drug B); 70, >1250, 315, >1250 and >1250 (drug C); and 30, 110, 710, 170 and 185 (drug D), respectively. Conclusions : A model-based design and analysis using a pharmacokinetic–pharmacodynamic approach can reduce the number of patients required to determine a drug effect at least 2-fold compared with current methodologies. This could significantly accelerate early-phase TB drug development.
Citation
Svensson , R J , Gillespie , S H & Simonsson , U S H 2017 , ' Improved power for TB phase IIa trials using a model-based pharmacokinetic-pharmacodynamic approach compared with commonly used analysis methods ' , Journal of Antimicrobial Chemotherapy , vol. 72 , no. 8 , pp. 2311-2319 . https://doi.org/10.1093/jac/dkx129
Publication
Journal of Antimicrobial Chemotherapy
Status
Peer reviewed
DOI
https://doi.org/10.1093/jac/dkx129
ISSN
0305-7453
Type
Journal article
Rights
© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Description
The research leading to these results has received funding from the Swedish Research Council (grant number 521-2011-3442) in addition to the Innovative Medicines Initiative Joint Undertaking (www.imi.europe.eu) under grant agreement no. 115337, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in kind contribution.
Collections
  • University of St Andrews Research
URL
https://academic.oup.com/jac/article-lookup/doi/10.1093/jac/dkx129#supplementary-data
URI
http://hdl.handle.net/10023/10907

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter