St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

Thumbnail
View/Open
Lee_2016_JoM_MM_Silicide_AM.pdf (1.671Mb)
Date
01/11/2016
Author
Chen, Shu
Lee, Stephen L.
André, Pascal
Funder
EPSRC
Grant ID
EP/I031014/1
Keywords
Iron platinum
Annealing
Silica
Silicide
Effect
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.
Citation
Chen , S , Lee , S L & André , P 2016 , ' Silicide induced surface defects in FePt nanoparticle fcc -to- fct thermally activated phase transition ' , Journal of Magnetism and Magnetic Materials , vol. 417 , pp. 442-450 . https://doi.org/10.1016/j.jmmm.2016.05.099
Publication
Journal of Magnetism and Magnetic Materials
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.jmmm.2016.05.099
ISSN
0304-8853
Type
Journal article
Rights
© 2016, Elsevier BV. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.sciencedirect.com / https://dx.doi.org/10.1016/j.jmmm.2016.05.099
Description
The authors would like to thank the James and Enid Nicol Trust for funding SC's studentship, the Canon Foundation in Europe for supporting PA's visits at the RIKEN and his Fellowship, and the Ministry of Science, ICT & Future Planning, Korea (201000453, 2015001948, 2014M3A6B3063706) for hosting PA's visits during the final write-up and submission stages of the manuscript.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10897

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter