Three-dimensional photonic confinement in imprinted liquid crystalline pillar microcavities
Date
19/05/2017Author
Funder
Grant ID
EP/M025330/1
Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We demonstrate the feasibility of a thermal imprint technology capable of structuring organic thin films with liquid crystalline properties forming feature sizes on a several micrometer scale. The imprint technique can directly be applied onto a variety of substrates including dielectric mirrors. The so fabricated three-dimensional microcavities have lateral extensions up to 20 µm and heights between 1 and 5 µm. Exemplarily, pillar microcavities were produced wherein three-dimensional photonic confinement is observed by the formation of 0D cavity mode patterns. The imprint technique further favors the formation of hemispherical pillar geometries rather than cylindrical pillars resulting in equidistant mode spacings of transversal cavity modes.
Citation
Dusel , M , Betzold , S , Brodbeck , S , Herbst , S , Würthner , F , Friedrich , D , Hecht , B , Höfling , S & Dietrich , C P 2017 , ' Three-dimensional photonic confinement in imprinted liquid crystalline pillar microcavities ' , Applied Physics Letters , vol. 110 , no. 20 , 201113 . https://doi.org/10.1063/1.4983565
Publication
Applied Physics Letters
Status
Peer reviewed
ISSN
0003-6951Type
Journal article
Rights
© 2017 the Author(s). This work has been made available online in accordance with the publisher’s policies. This is the author created accepted version manuscript following peer review and as such may differ slightly from the final published version. The final published version of this work is available at aip.scitation.org / https://doi.org/10.1063/1.4983565
Description
Sv.H. acknowledges financial support by the EPSRC ”Hybrid Polaritonics” Grant (EP/M025330/1). F.W. thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support (WU317/18-1).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.