Topological graph inverse semigroups
Date
01/08/2016Metadata
Show full item recordAltmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
To every directed graph E one can associate a graph inverse semigroup G(E), where elements roughly correspond to possible paths in E . These semigroups generalize polycyclic monoids, and they arise in the study of Leavitt path algebras, Cohn path algebras, graph C⁎C⁎-algebras, and Toeplitz C⁎-algebras. We investigate topologies that turn G(E) into a topological semigroup. For instance, we show that in any such topology that is Hausdorff, G(E)∖{0} must be discrete for any directed graph E . On the other hand, G(E) need not be discrete in a Hausdorff semigroup topology, and for certain graphs E , G(E) admits a T1 semigroup topology in which G(E)∖{0} is not discrete. We also describe, in various situations, the algebraic structure and possible cardinality of the closure of G(E) in larger topological semigroups.
Citation
Mesyan , Z , Mitchell , J D , Morayne , M & Péresse , Y H 2016 , ' Topological graph inverse semigroups ' , Topology and Its Applications , vol. 208 , pp. 106-126 . https://doi.org/10.1016/j.topol.2016.05.012
Publication
Topology and Its Applications
Status
Peer reviewed
ISSN
0166-8641Type
Journal article
Rights
© 2016, Elsevier B.V. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.sciencedirect.com / https://dx.doi.org/10.1016/j.topol.2016.05.012
Description
Michał Morayne was partially supported by NCN grant DEC-2011/01/B/ST1/01439 while this work was performed.Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.