St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  •   St Andrews Research Repository
  • Chemistry (School of)
  • Chemistry
  • Chemistry Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a biotechnological toolkit for the synthesis of diverse cyclic peptides

Thumbnail
View/Open
GregMannPhDThesis.pdf (84.48Mb)
Date
21/06/2017
Author
Mann, Gregory
Supervisor
Naismith, James
Keywords
Cyanobactins
Patellamides
Biosynthesis
Macrocycles
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Cyclic peptides possess desirable characteristics as potential pharmaceutical scaffolds. The cyanobactin family of cyclic peptide natural products boast diverse structures and bioactivity. Exemplars are the patellamides, which have attracted attention due to their ability to reverse the effects of multi-drug resistance in human leukemia cells. In addition to their macrocyclic architecture patellamides contain azol(in)e heterocycles and d-amino acids. This structural complexity makes them challenging targets for chemical synthesis. Understanding their biosynthesis will enable the development of a biotechnological ‘toolkit’ for the synthesis of new pharmaceutical compounds. Patellamides are ribosomally-synthesised and post-translationally modified peptides (RiPPs) and much of their biosynthesis has been elucidated, however there are still elements of their biosynthesis that are not yet fully understood. PatA and PatG contain C-terminal domains of unknown function (DUFs). The crystal structure of PatG-DUF has been solved and subsequent to biochemical and biophysical investigation PatG-DUF was found not to constitute an essential part of the biotechnological ‘toolkit’ and can be excluded from in vitro enzyme-based synthesis of cyanobactin-like cyclic peptides. The cyanobactin heterocyclases are able to introduce heterocycles into a peptide backbone, seemingly irrespective of the neighbouring residues; however a molecular rational governing substrate recognition is unknown. Additionally the mechanism of heterocyclisaton is disputed. Analysis of crystal structures of LynD in complex with cofactor and substrate (solved by Dr Jesko Koehnke) enabled the active site and substrate recognition site to be located. A new mechanism for heterocyclisation has been proposed. Guided by the substrate recognition observed in complex structures a constituently active heterocyclase (AcLynD) has been engineered, which is able to process short, leaderless peptide substrates. Epimerisation in cyanobactin biosynthesis is believed to be spontaneous, but its precise timing is uncertain. NMR analysis of selectively labelled peptide substrates processed by the modifying enzymes, identified epimerisation to be spontaneous on the macrocycle, regardless of whether the neighbouring heterocycles have been oxidised. A one-pot in vitro synthesis of cyanobactins has been developed, and employed to create a number of patellamide D analogues to ascertain structural-activity relationships.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Chemistry Theses
URI
http://hdl.handle.net/10023/10826

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter