Show simple item record

Files in this item


Item metadata

dc.contributor.authorCameron, Peter J.
dc.contributor.authorFernandes, Maria Elisa
dc.contributor.authorLeemans, Dimitri
dc.contributor.authorMixer, Mark
dc.identifier.citationCameron , P J , Fernandes , M E , Leemans , D & Mixer , M 2017 , ' Highest rank of a polytope for A n ' , Proceedings of the London Mathematical Society , vol. 115 , no. 1 , pp. 135-176 .
dc.identifier.otherPURE: 249289641
dc.identifier.otherPURE UUID: d6dfd17b-d6ca-486b-8a44-b67833cae443
dc.identifier.otherScopus: 85021787703
dc.identifier.otherORCID: /0000-0003-3130-9505/work/58055648
dc.identifier.otherWOS: 000404869400005
dc.descriptionThis research was supported by a Marsden grant (UOA1218) of the Royal Society of New Zealand, and by the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013.en
dc.description.abstractWe prove that the highest rank of a string C-group constructed from an alternating group An is 3 if n=5, 4 if n=9, 5 if n=10, 6 if n=11, and ⌊(n−1)/2⌋ if n⩾12. Moreover, if n=3,4,6,7, or 8, the group An is not a string C-group. This solves a conjecture made by the last three authors in 2012.
dc.relation.ispartofProceedings of the London Mathematical Societyen
dc.rights© 2017, London Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at
dc.subjectAbstract regular polytypesen
dc.subjectString C-groupsen
dc.subjectAlternating groupsen
dc.subjectPermutation groupsen
dc.subjectQA Mathematicsen
dc.titleHighest rank of a polytope for Anen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Centre for Interdisciplinary Research in Computational Algebraen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record