Files in this item
Highest rank of a polytope for An
Item metadata
dc.contributor.author | Cameron, Peter J. | |
dc.contributor.author | Fernandes, Maria Elisa | |
dc.contributor.author | Leemans, Dimitri | |
dc.contributor.author | Mixer, Mark | |
dc.date.accessioned | 2017-04-28T10:30:10Z | |
dc.date.available | 2017-04-28T10:30:10Z | |
dc.date.issued | 2017-07-04 | |
dc.identifier.citation | Cameron , P J , Fernandes , M E , Leemans , D & Mixer , M 2017 , ' Highest rank of a polytope for A n ' , Proceedings of the London Mathematical Society , vol. 115 , no. 1 , pp. 135-176 . https://doi.org/10.1112/plms.12039 | en |
dc.identifier.issn | 0024-6115 | |
dc.identifier.other | PURE: 249289641 | |
dc.identifier.other | PURE UUID: d6dfd17b-d6ca-486b-8a44-b67833cae443 | |
dc.identifier.other | Scopus: 85021787703 | |
dc.identifier.other | ORCID: /0000-0003-3130-9505/work/58055648 | |
dc.identifier.other | WOS: 000404869400005 | |
dc.identifier.uri | http://hdl.handle.net/10023/10678 | |
dc.description | This research was supported by a Marsden grant (UOA1218) of the Royal Society of New Zealand, and by the Portuguese Foundation for Science and Technology (FCT-Fundação para a Ciência e a Tecnologia), through CIDMA - Center for Research and Development in Mathematics and Applications, within project UID/MAT/04106/2013. | en |
dc.description.abstract | We prove that the highest rank of a string C-group constructed from an alternating group An is 3 if n=5, 4 if n=9, 5 if n=10, 6 if n=11, and ⌊(n−1)/2⌋ if n⩾12. Moreover, if n=3,4,6,7, or 8, the group An is not a string C-group. This solves a conjecture made by the last three authors in 2012. | |
dc.format.extent | 42 | |
dc.language.iso | eng | |
dc.relation.ispartof | Proceedings of the London Mathematical Society | en |
dc.rights | © 2017, London Mathematical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://doi.org/10.1112/plms.12039 | en |
dc.subject | Abstract regular polytypes | en |
dc.subject | String C-groups | en |
dc.subject | Alternating groups | en |
dc.subject | Permutation groups | en |
dc.subject | QA Mathematics | en |
dc.subject | Mathematics(all) | en |
dc.subject | T-NDAS | en |
dc.subject | BDC | en |
dc.subject | R2C | en |
dc.subject.lcc | QA | en |
dc.title | Highest rank of a polytope for An | en |
dc.type | Journal article | en |
dc.description.version | Postprint | en |
dc.contributor.institution | University of St Andrews. Pure Mathematics | en |
dc.contributor.institution | University of St Andrews. Centre for Interdisciplinary Research in Computational Algebra | en |
dc.identifier.doi | https://doi.org/10.1112/plms.12039 | |
dc.description.status | Peer reviewed | en |
This item appears in the following Collection(s)
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.