St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis, isotopic enrichment and solid-state NMR characterization of zeolites derived from the assembly, disassembly, organisation, reassembly process

Thumbnail
View/Open
Bignami_2017_Synthesis_JACS_5140_CC.pdf (3.375Mb)
Date
12/04/2017
Author
Bignami, Giulia P. M.
Dawson, Daniel M.
Seymour, Valerie R.
Wheatley, Paul S.
Morris, Russell E.
Ashbrook, Sharon E.
Keywords
QD Chemistry
DAS
BDC
R2C
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The great utility and importance of zeolites in fields as diverse as industrial catalysis and medicine has driven considerable interest in the ability to target new framework types with novel properties and applications. The recently introduced and unconventional assembly, disassembly, organization, reassembly (ADOR) method represents one exciting new approach to obtain solids with targeted structures by selectively disassembling preprepared hydrolytically unstable frameworks and then reassembling the resulting products to form materials with new topologies. However, the hydrolytic mechanisms underlying such a powerful synthetic method are not understood in detail, requiring further investigation of the kinetic behavior and the outcome of reactions under differing conditions. In this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of 17O- and doubly 17O- and 29Si-enriched UTL-derived zeolites, by synthesis of 29Si-enriched starting Ge-UTL frameworks and incorporation of 17O from 17O-enriched water during hydrolysis. 17O and 29Si NMR experiments are able to demonstrate that the hydrolysis and rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels of 17O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process and provides insight into the detailed mechanism of the structural changes involved.
Citation
Bignami , G P M , Dawson , D M , Seymour , V R , Wheatley , P S , Morris , R E & Ashbrook , S E 2017 , ' Synthesis, isotopic enrichment and solid-state NMR characterization of zeolites derived from the assembly, disassembly, organisation, reassembly process ' , Journal of the American Chemical Society , vol. 139 , no. 14 , pp. 5140-5148 . https://doi.org/10.1021/jacs.7b00386
Publication
Journal of the American Chemical Society
Status
Peer reviewed
DOI
https://doi.org/10.1021/jacs.7b00386
ISSN
0002-7863
Type
Journal article
Rights
© 2017 American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
Description
We would like to thank the ERC (EU FP7 Consolidator Grant 614290 “EXONMR”), the Leverhulme Trust (IN-2012-094), and EPSRC (EP/K025112/1, EP/L014475/1, and EP/M506631/1 (for GPMB)). S.E.A. would like to thank the Royal Society and the Wolfson Foundation for a merit award. The research data (and/or materials) supporting this publication can be accessed at DOI: 10.17630/d66d1146-5892-4f14-8e41-dfc075a8cd91.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10649

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter