Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorYe, Lingting
dc.contributor.authorZhang, Minyi
dc.contributor.authorHuang, Ping
dc.contributor.authorGuo, Guocong
dc.contributor.authorHong, Maochun
dc.contributor.authorLi, Chunsen
dc.contributor.authorIrvine, John T. S.
dc.contributor.authorXie, Kui
dc.date.accessioned2017-03-20T16:30:14Z
dc.date.available2017-03-20T16:30:14Z
dc.date.issued2017-03-16
dc.identifier.citationYe , L , Zhang , M , Huang , P , Guo , G , Hong , M , Li , C , Irvine , J T S & Xie , K 2017 , ' Enhancing CO 2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures ' , Nature Communications , vol. 8 , 14785 . https://doi.org/10.1038/ncomms14785en
dc.identifier.issn2041-1723
dc.identifier.otherPURE: 249430011
dc.identifier.otherPURE UUID: cb70e3e3-e2bf-441f-9ea2-6f85bcb1953b
dc.identifier.otherScopus: 85015376112
dc.identifier.otherWOS: 000396399300001
dc.identifier.otherORCID: /0000-0002-8394-3359/work/68280884
dc.identifier.urihttps://hdl.handle.net/10023/10497
dc.descriptionK.X. acknowledges Natural Science Foundation of China (91545123) and Natural Science Foundation of Fujian Province (2016J01275) for funding this work. C.L. acknowledges support by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB20000000 and Hundred Talents Program of the Chinese Academy of Sciences. J.T.S.I. acknowledges funding from EPSRC Platform Grant EP/K015540/1 and Royal Society Wolfson Merit Award WRMA 2012/R2.en
dc.description.abstractSustainable future energy scenarios require significant efficiency improvements in both electricity generation and storage. High-temperature solid oxide cells, and in particular carbon dioxide electrolysers, afford chemical storage of available electricity that can both stabilize and extend the utilization of renewables. Here we present a double doping strategy to facilitate CO2 reduction at perovskite titanate cathode surfaces, promoting adsorption/activation by making use of redox active dopants such as Mn linked to oxygen vacancies and dopants such as Ni that afford metal nanoparticle exsolution. Combined experimental characterization and first-principle calculations reveal that the adsorbed and activated CO2 adopts an intermediate chemical state between a carbon dioxide molecule and a carbonate ion. The dual doping strategy provides optimal performance with no degradation being observed after 100 h of high-temperature operation and 10 redox cycles, suggesting a reliable cathode material for CO2 electrolysis.
dc.language.isoeng
dc.relation.ispartofNature Communicationsen
dc.rightsCopyright 2017 the authors. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.subjectQD Chemistryen
dc.subjectE-NDASen
dc.subjectSDG 7 - Affordable and Clean Energyen
dc.subject.lccQDen
dc.titleEnhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structuresen
dc.typeJournal articleen
dc.contributor.sponsorEPSRCen
dc.contributor.sponsorThe Royal Societyen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Chemistryen
dc.contributor.institutionUniversity of St Andrews. EaSTCHEMen
dc.identifier.doihttps://doi.org/10.1038/ncomms14785
dc.description.statusPeer revieweden
dc.identifier.grantnumberEP/K015540/1en
dc.identifier.grantnumberWRMA 2012/R2en


This item appears in the following Collection(s)

Show simple item record