Show simple item record

Files in this item


Item metadata

dc.contributor.authorTkachenko, Georgiy
dc.contributor.authorChen, Mingzhou
dc.contributor.authorDholakia, Kishan
dc.contributor.authorMazilu, Michael
dc.identifier.citationTkachenko , G , Chen , M , Dholakia , K & Mazilu , M 2017 , ' Is it possible to create a perfect fractional vortex beam? ' , Optica , vol. 4 , no. 3 , pp. 330-333 .
dc.identifier.otherPURE: 249091590
dc.identifier.otherPURE UUID: b32773c2-5314-496f-a498-d5ab17cb3f96
dc.identifier.otherScopus: 85015914914
dc.identifier.otherORCID: /0000-0002-6190-5167/work/47136398
dc.identifier.otherWOS: 000397793200006
dc.description.abstractLaguerre-Gaussian beams of integer azimuthal index satisfy the fundamental principle of quantization of orbital angular momentum. Here, we consider light-induced orbiting of a trapped microparticle as a probe of the local orbital angular momentum density in both integer- and fractional-index perfect vortex beams. Simulations suggest that the distribution and the corresponding light-induced motion of the particle, may be uniform in beams with integer azimuthal index but fundamentally this cannot be achieved in beams with fractional index. We experimentally verify these predictions by light-induced trapping and rotation of individual microparticles in fractional index beams where we distribute the phase dislocations around the annular profile.
dc.rightsCopyright © 2017 Optical Society of America. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.en
dc.subjectQC Physicsen
dc.subjectT Technologyen
dc.titleIs it possible to create a perfect fractional vortex beam?en
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Biomedical Sciences Research Complexen
dc.description.statusPeer revieweden

This item appears in the following Collection(s)

Show simple item record