St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies of current collection configurations and sealing for tubular hybrid-DCFC

Thumbnail
View/Open
manuscript_revised_Studies_of_current_collection_and_sealant.pdf (289.3Kb)
Date
02/11/2016
Author
Bonaccorso, Alfredo Damiano
Jiang, Cairong
Ma, Jianjun
Irvine, John Thomas Sirr
Keywords
Fuel cell
DCFC
Sealant
CGO
LSM
Current collector
QD Chemistry
DAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Direct Carbon Fuel Cells (DCFC) offer efficient conversion of coal or biomass derived carbons to electricity. A Hybrid Direct Carbon Fuel Cell (HDCFC) is a type of DCFCs that combines solid oxide cell geometry with a molten carbonate fuel cell electrode. This study focused on investigating different current collection configurations and sealant for tubular HDCFC concept. A HDCFC used a gadolinia doped ceria (GDC) or a YSZ as the electrolyte, in composites with NiO and LSM as the anode and the cathode, respectively. Three different current collection configurations of HDCFC were investigated by AC impedance in order to study the electrochemical phenomena that occur at the electrodes surface. The AC impedance results showed that both the surface area and the position of the current collector inside of the anode chamber affect drastically both the series resistance (Rs) and the polarisation resistance (Rp) values. The lowest total resistance (Rtot) was achieved on Configuration b with silver wire interwoven nickel mesh attached to the side of the anode wall by silver paste (Rtot = 2.98 Ω) and while the highest Rtot was achieved on the configuration c with silver wire interwoven nickel mesh inserted into the mixture of carbon and carbonate (Rtot = 149 Ω). The leak test carried out on several sealants demonstrated that composite sealants of Toku P-24 paste and an alumina silicate disc produced a low degree of leaks due to both the high resistance to the carbonate mixture and high density sealing after curing compared to the ceramabond.
Citation
Bonaccorso , A D , Jiang , C , Ma , J & Irvine , J T S 2016 , ' Studies of current collection configurations and sealing for tubular hybrid-DCFC ' , International Journal of Hydrogen Energy , vol. 41 , no. 41 , pp. 18788-18796 . https://doi.org/10.1016/j.ijhydene.2016.01.115
Publication
International Journal of Hydrogen Energy
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.ijhydene.2016.01.115
ISSN
0360-3199
Type
Journal article
Rights
Copyright © 2016 Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at https://dx.doi.org/10.1016/j.ijhydene.2016.01.115
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10356

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter