From the track to the ocean : using flow control to improve marine bio-logging tags for cetaceans
Abstract
Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal.
Citation
Fiore , G , Anderson , E , Garborg , C S , Murray , M , Johnson , M , Moore , M J , Howle , L & Shorter , K A 2017 , ' From the track to the ocean : using flow control to improve marine bio-logging tags for cetaceans ' , PLoS One , vol. 12 , no. 2 , e0170962 . https://doi.org/10.1371/journal.pone.0170962
Publication
PLoS One
Status
Peer reviewed
ISSN
1932-6203Type
Journal article
Rights
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Description
This project was funded by the National Oceanographic Partnership Program [National Science Foundation via the Office of Naval Research N00014-11-1-0113]. C. Spencer Garborg was supported by a Grove City College Swezey Student Fellowship to Erik Anderson. Mark Johnson was funded by a Marie Curie-Sklodowska grant from the European Union. All supplemental data files are available from the Dryad Digital Repository (doi:10.5061/dryad.4j4m1).Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.