Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorQuaiser, Achim
dc.contributor.authorConstantinesco, Florence
dc.contributor.authorWhite, Malcolm F
dc.contributor.authorForterre, Patrick
dc.contributor.authorElie, Christiane
dc.date.accessioned2010-10-14T10:12:26Z
dc.date.available2010-10-14T10:12:26Z
dc.date.issued2008-02-22
dc.identifier.citationQuaiser , A , Constantinesco , F , White , M F , Forterre , P & Elie , C 2008 , ' The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius ' , BMC Molecular Biology , vol. 9 , 25 . https://doi.org/10.1186/1471-2199-9-25en
dc.identifier.issn1471-2199
dc.identifier.otherPURE: 617541
dc.identifier.otherPURE UUID: 3e04ad6b-e9b0-46dc-9b23-8fcc681c7680
dc.identifier.otherWOS: 000254712300001
dc.identifier.otherScopus: 41749101058
dc.identifier.otherORCID: /0000-0003-1543-9342/work/47136120
dc.identifier.urihttps://hdl.handle.net/10023/1027
dc.description.abstractBackground: The ubiquitous Rad50 and Mre11 proteins play a key role in many processes involved in the maintenance of genome integrity in Bacteria and Eucarya, but their function in the Archaea is presently unknown. We showed previously that in most hyperthermophilic archaea, rad50-mre11 genes are linked to nurA encoding both a single-strand endonuclease and a 5' to 3' exonuclease, and herA, encoding a bipolar DNA helicase which suggests the involvement of the four proteins in common molecular pathway(s). Since genetic tools for hyperthermophilic archaea are just emerging, we utilized immuno-detection approaches to get the first in vivo data on the role(s) of these proteins in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Results: We first showed that S. acidocaldarius can repair DNA damage induced by high doses of gamma rays, and we performed a time course analysis of the total levels and sub-cellular partitioning of Rad50, Mre11, HerA and NurA along with the RadA recombinase in both control and irradiated cells. We found that during the exponential phase, all proteins are synthesized and display constant levels, but that all of them exhibit a different sub-cellular partitioning. Following gamma irradiation, both Mre11 and RadA are immediately recruited to DNA and remain DNA-bound in the course of DNA repair. Furthermore, we show by immuno-precipitation assays that Rad50, Mre11 and the HerA helicase interact altogether. Conclusion: Our analyses strongly support that in Sulfolobus acidocaldarius, the Mre11 protein and the RadA recombinase might play an active role in the repair of DNA damage introduced by gamma rays and/or may act as DNA damage sensors. Moreover, our results demonstrate the functional interaction between Mre11, Rad50 and the HerA helicase and suggest that each protein play different roles when acting on its own or in association with its partners. This report provides the first in vivo evidence supporting the implication of the Mre11 protein in DNA repair processes in the Archaea and showing its interaction with both Rad50 and the HerA bipolar helicase. Further studies on the functional interactions between these proteins, the NurA nuclease and the RadA recombinase, will allow us to define their roles and mechanism of action.
dc.format.extent10
dc.language.isoeng
dc.relation.ispartofBMC Molecular Biologyen
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectStrand break repairen
dc.subjectHyperthermophilic archaeonen
dc.subjectHomologous recombinationen
dc.subjectPyrococcus-furiosusen
dc.subjectEscherichia-colien
dc.subjectThermophilic archaeaen
dc.subjectIonizing-radiationen
dc.subjectChromosome segregationen
dc.subjectGenetic-recombinationen
dc.subjectReplication forksen
dc.subjectQH426 Geneticsen
dc.subject.lccQH426en
dc.titleThe Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldariusen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews. School of Biologyen
dc.contributor.institutionUniversity of St Andrews. Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1186/1471-2199-9-25
dc.description.statusPeer revieweden
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=41749101058&partnerID=8YFLogxKen


This item appears in the following Collection(s)

Show simple item record