Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorKarl, M.
dc.contributor.authorDietrich, C. P.
dc.contributor.authorSchubert, M.
dc.contributor.authorSamuel, I. D. W.
dc.contributor.authorTurnbull, G. A.
dc.contributor.authorGather, M. C.
dc.date.accessioned2017-02-06T10:30:14Z
dc.date.available2017-02-06T10:30:14Z
dc.date.issued2017-03-01
dc.identifier.citationKarl , M , Dietrich , C P , Schubert , M , Samuel , I D W , Turnbull , G A & Gather , M C 2017 , ' Single cell induced optical confinement in biological lasers ' , Journal of Physics D : Applied Physics , vol. 50 , no. 8 , 084005 . https://doi.org/10.1088/1361-6463/aa5367 , https://doi.org/10.1088/1361-6463/aa5367en
dc.identifier.issn0022-3727
dc.identifier.otherPURE: 247703470
dc.identifier.otherPURE UUID: 21288fbc-fd3c-41c0-82fc-91b8461ce05c
dc.identifier.otherWOS: 000415182400001
dc.identifier.otherScopus: 85011960864
dc.identifier.otherWOS: 000415182400001
dc.identifier.otherORCID: /0000-0002-2132-7091/work/31037438
dc.identifier.otherORCID: /0000-0002-4857-5562/work/47136478
dc.identifier.otherORCID: /0000-0002-8739-4852/work/36937595
dc.identifier.urihttp://hdl.handle.net/10023/10235
dc.descriptionWe acknowledge financial support from the European Research Council (ERC StG ABLASE, 640012), the Scottish Funding Council (via SUPA) and the European Union Marie Curie Career Integration Grant (PCIG12-GA-2012-334407). M.K. acknowledges funding from the EPSRC DTG (EP/M506631/1). M.S. acknowledges funding from the European Commission for a Marie Sklodowska-Curie Individual Fellowship (659213). I.D.W.S. acknowledges funding from a Royal Society Wolfson research merit award.en
dc.description.abstractBiological single cell lasers have shown great potential for fundamental research and next generation sensing applications. In this study, the potential of fluorescent biological cells as refractive index landscapes and active optical elements is investigated using a combined Fourier- and hyperspectral imaging technique. We show that the refractive index contrast between cell and surrounding leads to three dimensional confinement of photons inside living cells. The Fourier- and real-space emission characteristics of these biological lasers are closely related and can be predicted from one another. Investigations of the lasing threshold for different energy and momentum position in Fourier-space give insight into the fundamental creation of longitudinal and transverse lasing modes within the cell. These findings corroborate the potential of living biological materials for precision engineering of photonic structures and may pave the way towards low threshold polariton lasing from single cells.
dc.format.extent9
dc.language.isoeng
dc.relation.ispartofJournal of Physics D : Applied Physicsen
dc.rights© 2017 IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en
dc.subjectBiolaseren
dc.subjectOptical confinementen
dc.subjectMicrocavitiesen
dc.subjectFourier imagingen
dc.subjectHyperspectral imagingen
dc.subjectQC Physicsen
dc.subjectQH301 Biologyen
dc.subjectT Technologyen
dc.subjectDASen
dc.subject.lccQCen
dc.subject.lccQH301en
dc.subject.lccTen
dc.titleSingle cell induced optical confinement in biological lasersen
dc.typeJournal articleen
dc.description.versionPublisher PDFen
dc.contributor.institutionUniversity of St Andrews.School of Physics and Astronomyen
dc.contributor.institutionUniversity of St Andrews.Condensed Matter Physicsen
dc.contributor.institutionUniversity of St Andrews.Biomedical Sciences Research Complexen
dc.identifier.doihttps://doi.org/10.1088/1361-6463/aa5367
dc.description.statusPeer revieweden


This item appears in the following Collection(s)

Show simple item record