St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carrier delocalization in InAs/InGaAlAs/InP quantum‐dash‐based tunnel injection system for 1.55 μm emission

Thumbnail
View/Open
Rudno_Rudi_ski_2016_Carrier_AIPAdv_015117_CC.pdf (1.867Mb)
Date
01/2017
Author
Rudno-Rudiński, W.
Syperek, M.
Andrzejewski, J.
Maryński, A.
Misiewicz, J.
Somers, A.
Höfling, Sven
Reithmaier, J. P.
Sęk, G.
Keywords
QC Physics
T Technology
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We have investigated optical properties of hybrid two‐dimensional‐zero‐dimensional (2D‐0D) tunnel structures containing strongly elongated InAs/InP(001) quantum dots (called quantum dashes), emitting at 1.55 μm. These quantum dashes (QDashes) are separated by a 2.3 nm‐width barrier from an InGaAs quantum well (QW), lattice matched to InP. We have tailored quantum‐mechanical coupling between the states confined in QDashes and a QW by changing the QW thickness. By combining modulation spectroscopy and photoluminescence excitation, we have determined the energies of all relevant optical transitions in the system and proven the carrier transfer from the QW to the QDashes, which is the fundamental requirement for the tunnel injection scheme. A transformation between 0D and mixed‐type 2D‐0D character of an electron and a hole confinement in the ground state of the hybrid system have been probed by time‐resolved photoluminescence that revealed considerable changes in PL decay time with the QW width changes. The experimental discoveries have been explained by band structure calculations in the framework of the eight‐band k⋅p model showing that they are driven by delocalization of the lowest energy hole state. The hole delocalization process from the 0D QDash confinement is unfavorable for optical devices based on such tunnel injection structures.
Citation
Rudno-Rudiński , W , Syperek , M , Andrzejewski , J , Maryński , A , Misiewicz , J , Somers , A , Höfling , S , Reithmaier , J P & Sęk , G 2017 , ' Carrier delocalization in InAs/InGaAlAs/InP quantum‐dash‐based tunnel injection system for 1.55 μm emission ' , AIP Advances , vol. 7 , no. 1 , 015117 . https://doi.org/10.1063/1.4975634
Publication
AIP Advances
Status
Peer reviewed
DOI
https://doi.org/10.1063/1.4975634
ISSN
2158-3226
Type
Journal article
Rights
© 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
Description
The work has been supported by the grant No. 2013/10/M/ST3/00636 of the National Science Centre in Poland and the QuCoS Project of Deutsche Forschungsgemeinschaft No. RE1110/16‐1.
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10220

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter