St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Meissner-like effect for synthetic gauge field in multimode cavity QED

Thumbnail
View/Open
Ballantine_2016_Meissner_PhysRevLett_AAM.pdf (6.446Mb)
Date
27/01/2017
Author
Ballantine, Kyle E.
Lev, Benjamin L.
Keeling, Jonathan
Keywords
QC Physics
TK Electrical engineering. Electronics Nuclear engineering
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Previous realizations of synthetic gauge fields for ultracold atoms do not allow the spatial profile of the field to evolve freely. We propose a scheme which overcomes this restriction by using the light in a multimode cavity, in conjunction with Raman coupling, to realize an artificial magnetic field which acts on a Bose-Einstein condensate of neutral atoms. We describe the evolution of such a system, and present the results of numerical simulations which show dynamical coupling between the effective field and the matter on which it acts. Crucially, the freedom of the spatial profile of the field is sufficient to realize a close analogue of the Meissner effect, where the magnetic field is expelled from the superfluid. This back-action of the atoms on the synthetic field distinguishes the Meissner-like effect described here from the Hess-Fairbank suppression of rotation in a neutral superfluid observed elsewhere.
Citation
Ballantine , K E , Lev , B L & Keeling , J 2017 , ' Meissner-like effect for synthetic gauge field in multimode cavity QED ' , Physical Review Letters , vol. 118 , no. 4 , 045302 . https://doi.org/10.1103/PhysRevLett.118.045302
Publication
Physical Review Letters
Status
Peer reviewed
DOI
https://doi.org/10.1103/PhysRevLett.118.045302
ISSN
0031-9007
Type
Journal article
Rights
© 2017, American Physical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at journals.aps/prb / http://dx.doi.org/10.1103/PhysRevLett.118.045302
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10201

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter