St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the stability of homogeneous steady states of a chemotaxis system with logistic growth term

Thumbnail
View/Open
Chaplain_Homogeneous_APL_AM.pdf (222.1Kb)
Date
07/2016
Author
Chaplain, Mark Andrew Joseph
Tello, J. I.
Keywords
Chemotaxis
Stability
Steady state
Lower and upper solutions
QA Mathematics
QH301 Biology
T-NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
We consider a nonlinear PDEs system of Parabolic-Elliptic type with chemotactic terms. The system models the movement of a population “n” towards a higher concentration of a chemical “c” in a bounded domain Ω. We consider constant chemotactic sensitivity χ and an elliptic equation to describe the distribution of the chemicalnt − dnΔn = −χdiv(n∇c) + μn(1−n), −dcΔc + c = h(n) for a monotone increasing and lipschitz function h. We study the asymptotic behavior of solutions under the assumption of 2χ∣h′∣ < μ. As a result of the asymptotic stability we obtain the uniqueness of the strictly positive steady states.
Citation
Chaplain , M A J & Tello , J I 2016 , ' On the stability of homogeneous steady states of a chemotaxis system with logistic growth term ' , Applied Mathematics Letters , vol. 57 , pp. 1-6 . https://doi.org/10.1016/j.aml.2015.12.001
Publication
Applied Mathematics Letters
Status
Peer reviewed
DOI
https://doi.org/10.1016/j.aml.2015.12.001
ISSN
0893-9659
Type
Journal article
Rights
© 2016, Publisher / the Author(s). This work is made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at www.sciencedirect.com / https://dx.doi.org/10.1016/j.aml.2015.12.001
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10087

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter