St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Magneto-static modeling from SUNRISE/IMaX : application to an active region observed with SUNRISE II

Thumbnail
View/Open
Wiegelmann_2017_Magneto_static_APJSS_AAM.pdf (1.444Mb)
Date
22/03/2017
Author
Wiegelmann, T.
Neukirch, Thomas
Nickeler, D. H.
Solanki, S. K.
Barthol, P.
Gandorfer, A.
Gizon, L.
Hirzberger, J.
Riethmüller, T. L.
Noort, M. van
Rodríguez, J. Blanco
Del Toro Iniesta, J. C.
Suárez, D. Orozco
Schmidt, W.
Pillet, V. Martínez
Knölker, M.
Funder
Science & Technology Facilities Council
Science & Technology Facilities Council
Grant ID
ST/K000950/1
ST/N000609/1
Keywords
Sun: magnetic topology
Sun: chromosphere
Sun: corona
Sun: photosphere
QB Astronomy
QC Physics
NDAS
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Magneto-static models may overcome some of the issues facing force-free magnetic field extrapolations. So far they have seen limited use and have faced problems when applied to quiet-Sun data. Here we present a first application to an active region. We use solar vector magnetic field measurements gathered by the IMaX polarimeter during the flight of the \sunrise{} balloon-borne solar observatory in June 2013 as boundary condition for a magneto-static model of the higher solar atmosphere above an active region. The IMaX data are embedded in active region vector magnetograms observed with SDO/HMI. This work continues our magneto-static extrapolation approach, which has been applied earlier ({\it Paper I}) to a quiet Sun region observed with \sunrise{} I. In an active region the signal-to-noise-ratio in the measured Stokes parameters is considerably higher than in the quiet Sun and consequently the IMaX measurements of the horizontal photospheric magnetic field allow us to specify the free parameters of the model in a special class of linear magneto-static equilibria. The high spatial resolution of IMaX (110-130 km, pixel size 40 km) enables us to model the non-force-free layer between the photosphere and the mid chromosphere vertically by about 50 grid points. In our approach we can incorporate some aspects of the mixed beta layer of photosphere and chromosphere, e.g., taking a finite Lorentz force into account, which was not possible with lower resolution photospheric measurements in the past. The linear model does not, however, permit to model intrinsic nonlinear structures like strongly localized electric currents.
Citation
Wiegelmann , T , Neukirch , T , Nickeler , D H , Solanki , S K , Barthol , P , Gandorfer , A , Gizon , L , Hirzberger , J , Riethmüller , T L , Noort , M V , Rodríguez , J B , Del Toro Iniesta , J C , Suárez , D O , Schmidt , W , Pillet , V M & Knölker , M 2017 , ' Magneto-static modeling from SUNRISE/IMaX : application to an active region observed with SUNRISE II ' , Astrophysical Journal Supplement Series , vol. 229 , no. 1 , 18 . https://doi.org/10.3847/1538-4365/aa582f
Publication
Astrophysical Journal Supplement Series
Status
Peer reviewed
DOI
https://doi.org/10.3847/1538-4365/aa582f
ISSN
0067-0049
Type
Journal article
Rights
© 2017, American Astronomical Society. This work has been made available online in accordance with the publisher’s policies. This is the author created, accepted version manuscript following peer review and may differ slightly from the final published version. The final published version of this work is available at iopscience.iop.org / http://dx.doi.org/10.3847/1538-4365/aa582f
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10083

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter