St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  •   St Andrews Research Repository
  • University of St Andrews Research
  • University of St Andrews Research
  • University of St Andrews Research
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral identification and quantification of salts in the Atacama Desert

Thumbnail
View/Open
Cousins_2016_SPIE_Spectral_VoR.pdf (1.123Mb)
Date
16/10/2016
Author
Harris, Jennifer
Cousins, C. R.
Claire, M. W.
Keywords
Spectra Mixture Analysis
Salts
Hyperion
Hyperspectral
Atacama Desert
GE Environmental Sciences
NDAS
Metadata
Show full item record
Abstract
Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The advent of global hyperspectral imagery from instruments such as Hyperion on NASA’s Earth-Observing 1 satellite has opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data ranging 0.35 – 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and perchlorates; and images from the EO-1 satellite’s Hyperion instrument taken over the same four locations. Mineral identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly calcium sulfate, from both hyperspectral image and laboratory sample spectra, while abundance estimation of other salt phase spectral end-members was achieved with a higher degree of error.
Citation
Harris , J , Cousins , C R & Claire , M W 2016 , Spectral identification and quantification of salts in the Atacama Desert . in U Michel , K Schulz , M Ehlers , K G Nikolakopoulos & D Civco (eds) , Earth Resources and Environmental Remote Sensing/GIS Applications VII . vol. 10005 , 100050I , Proceedings of SPIE , vol. 10005 , SPIE , Earth Resources and Environmental Remote Sensing/GIS Applications VII , Edinburgh , United Kingdom , 27/09/16 . https://doi.org/10.1117/12.2241520
 
conference
 
Publication
Earth Resources and Environmental Remote Sensing/GIS Applications VII
DOI
https://doi.org/10.1117/12.2241520
ISSN
0277-786X
Type
Conference item
Rights
Copyright © 2016, Society of Photo-Optical Instrumentation Engineers. This work has been made available online in accordance with the publisher’s policies. This is the final published version of the work, which was originally published at: https://doi.org/10.1117/12.2241520
Description
This work was part-funded by a Research Incentive Grant from The Carnegie Trust (REF: 70335) and a Royal Society of Edinburgh Research Fellowship to C. Cousins. J, Harris acknowledges funding from STFC (consolidated grant ST/N000528/1).
Collections
  • University of St Andrews Research
URI
http://hdl.handle.net/10023/10080

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter