Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.authorScullion, E.
dc.contributor.authorRouppe Van Der Voort, L.
dc.contributor.authorAntolin, P.
dc.contributor.authorWedemeyer, S.
dc.contributor.authorVissers, G.
dc.contributor.authorKontar, E. P.
dc.contributor.authorGallagher, P.
dc.date.accessioned2016-12-21T17:30:10Z
dc.date.available2016-12-21T17:30:10Z
dc.date.issued2016-12-20
dc.identifier247838584
dc.identifiera0ba30f6-f46c-4fbf-8257-175cd1d33b61
dc.identifier85008168517
dc.identifier.citationScullion , E , Rouppe Van Der Voort , L , Antolin , P , Wedemeyer , S , Vissers , G , Kontar , E P & Gallagher , P 2016 , ' Observing the formation of flare-driven coronal rain ' , Astrophysical Journal , vol. 833 , no. 2 , 184 . https://doi.org/10.3847/1538-4357/833/2/184en
dc.identifier.issn0004-637X
dc.identifier.otherBibCode: 2016arXiv161009255S
dc.identifier.urihttps://hdl.handle.net/10023/10001
dc.descriptionPA. GV are funded by the European Research Council under the European Union Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 291058en
dc.description.abstractFlare-driven coronal rain can manifest from rapidly cooled plasma condensations near coronal loop-tops in thermally unstable post-flare arcades. We detect 5 phases that characterise the post-flare decay:heating, evaporation, conductive cooling dominance for ~120 s, radiative/ enthalpy cooling dominance for ~4700 s and finally catastrophic cooling occurring within 35-124 s leading to rain strands with s periodicity of 55-70 s. We find an excellent agreement between the observations and model predictions of the dominant cooling timescales and the onset of catastrophic cooling. At the rain formation site we detect co-moving, multi-thermal rain clumps that undergo catastrophic cooling from ~1 MK to ~22000 K. During catastrophic cooling the plasma cools at a maximum rate of 22700 K s-1 in multiple loop-top sources. We calculated the density of the EUV plasma from the DEM of the multi-thermal source employing regularised inversion. Assuming a pressure balance, we estimate the density of the chromospheric component of rain to be 9.21x1011 ±1.76x1011 cm-3 which is comparable with quiescent coronal rain densities. With up to 8 parallel strands in the EUV loop cross section, we calculate the mass loss rate from the post-flare arcade to be as much as 1.98x1012 ± 4.95x1011 g s-1. Finally, we reveal a close proximity between the model predictions of 105.8 K and the observed properties between 105.9 K and 106.2 K, that defines the temperature onset of catastrophic cooling. The close correspondence between the observations and numerical models suggests that indeed acoustic waves (with a sound travel time of 68 s) could play an important role in redistributing energy and sustaining the enthalpy-based radiative cooling.
dc.format.extent24
dc.format.extent12649208
dc.language.isoeng
dc.relation.ispartofAstrophysical Journalen
dc.subjectSunen
dc.subjectMethods: observationalen
dc.subjectMethods: data analysisen
dc.subjectTechniques: image processingen
dc.subjectTechniques: spectroscopicen
dc.subjectTelescopesen
dc.subjectQB Astronomyen
dc.subjectQC Physicsen
dc.subjectNDASen
dc.subject.lccQBen
dc.subject.lccQCen
dc.titleObserving the formation of flare-driven coronal rainen
dc.typeJournal articleen
dc.contributor.institutionUniversity of St Andrews. Applied Mathematicsen
dc.contributor.institutionUniversity of St Andrews. Pure Mathematicsen
dc.identifier.doihttps://doi.org/10.3847/1538-4357/833/2/184
dc.description.statusPeer revieweden
dc.identifier.urlhttps://arxiv.org/abs/1610.09255en
dc.identifier.urlhttp://adsabs.harvard.edu/abs/2016arXiv161009255Sen


This item appears in the following Collection(s)

Show simple item record