St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

One- and two-photon pumped organic semiconductor lasers

Thumbnail
View/Open
Georgios Tsiminis PhD thesis.PDF (28.36Mb)
Date
2010
Author
Tsiminis, Georgios
Supervisor
Turnbull, Graham A.
Samuel, Ifor D. W.
Keywords
Laser
Organic semiconductor
Nonlinear optics
Polymer
Photonics
Device
Organic
Materials
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
This thesis describes a number of studies on organic semiconductors focused around using them as gain media for lasers. The photophysical properties of organic semiconductors are studied using a wide range of experimental techniques, allowing the evaluation of new materials and novel excitation schemes for use in organic semiconductor lasers. Polyfluorene is a well-established conjugated polymer laser gain medium and in this thesis its excellent lasing properties are combined with its two photon absorption properties to demonstrate a tunable two-photon pumped solid-state laser based on a commercially available organic semiconductor. A family of bisfluorene dendrimers was studied using a number of photophysical techniques to evaluate their potential as laser materials. Distributed feedback lasers based on one of the dendrimers are demonstrated with lasing thresholds comparable to polyfluorene. The same materials were found to have enhanced two-photon absorption properties in comparison to polyfluorene, leading to the fabrication of tunable two-photon pumped dendrimer lasers. A member of a novel family of star-shaped oligofluorene truxenes was evaluated as a laser gain material and the distributed feedback lasers made from them show some of the lowest lasing thresholds reported for organic semiconductors, partly as a consequence of exceptionally low waveguide losses in comparison to other single-material thin films. Finally, an organic laser dye is blended with a conjugated polymer, where the dye molecules harvest the excitation light of a GaN laser diode and transfer its energy to the polymer molecules. This is the first time such a scheme is used in an organic laser and in combination with a novel surface-emitting distributed Bragg reflector resonator allows the demonstration of a diode-pumped organic laser, a significant step towards simplifying organic lasers.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/927

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter