Aspects of order and congruence relations on regular semigroups
Abstract
On a regular semigroup S natural order relations have been defined
by Nambooripad and by Lallement. Different characterisations and
relationships between the Nambooripad order J, Lallement's order λ and
a certain relation k are considered in Chapter I. It is shown that on
a regular semigroup S the partial order J is left compatible if and
only if S is locally R-unipotent. This condition in the case where S
is orthodox is equivalent to saying that E(S) is a left seminormal
band. It is also proved that λ is the least compatible partial order
contained in J and that k = λ if and only if k is compatible and k
if and only if J is compatible. A description of λ and J in the
semigroups T(X) and PT(X) is presented.
In Chapter II, it is proved that in an orthodox semigroup S the
band of idempotents E(S) is left quasinormal if and only if there
exists a local isomorphism from S onto an R-unipotent semigroup. It is
shown that there exists a least R-unipotent congruence on any orthodox
semigroup, generated by a certain left compatible equivalence R. This
equivalence is a congruence if and only if E(S) is a right semiregular
band.
The last Chapter is particularly concerned with the description of
R-unipotent congruences on a regular semigroup S by means of their
kernels and traces. The lattice RC(S) of all R-unipotent congruences
on a regular semigroup S is studied. A congruence≡ on the lattice
RC(S) is considered and the greatest and the least element of each
≡-class are described.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.