St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-pore channels and NAADP-dependent calcium signalling

Thumbnail
View/Open
Peter James Calcraft PhD thesis.PDF (33.79Mb)
Date
23/06/2010
Author
Calcraft, Peter James
Supervisor
Evans, A. Mark
Funder
British Heart Foundation
Keywords
Nicotinic acid adenine dinucleotide phosphate
Calcium
Lysosome
Two-pore channel
NAADP
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca²⁺ mobilising messenger in mammalian and non-mammalian cells. Studies on a variety of cell types suggest that NAADP evokes Ca²⁺ release from a lysosome-related store and via activation of a receptor distinct from either ryanodine receptors (RyR) or inositol 1,4,5-trisphosphate (IP₃) receptors (IP₃R). However, the identity of the NAADP receptor has, until now, remained elusive. In this thesis I have shown that NAADP-evoked Ca²⁺ release from lysosomes is underpinned by two-pore channels (TPCs), of which there are 3 subtypes, TPC1, TPC2 and TPC3. When stably over-expressed in HEK293 cells, TPC2 was found to be specifically targeted to lysosomes, while TPC1 and TPC3 were targeted to endosomes. Initial Ca²⁺ signals via TPC2, but not those via TPC1, were amplified into global Ca²⁺ waves by Ca²⁺-induced Ca²⁺ release (CICR) from the endoplasmic reticulum (ER) via IP₃Rs. I have shown that, consistent with a role for TPCs in NAADP-mediated Ca²⁺ release, TPC2 is expressed in pulmonary arterial smooth muscle cells (PASMCs), is likely targeted to lysosomal membranes, and that TPCs also underpin NAADP-evoked Ca²⁺ signalling in this cell type. However, and in contrast to HEK293 cells, in PASMCs NAADP evokes spatially restricted Ca²⁺ bursts that are amplified into global Ca²⁺ waves by CICR from the sarcoplasmic reticulum (SR) via a subpopulation of RyRs, but not via IP₃Rs. I have demonstrated that lysosomes preferentially co-localise with RyR subtype 3 (RyR3) in the perinuclear region of PASMCs to comprise a “trigger zone” for Ca²⁺ signalling by NAADP, away from which a propagating Ca²⁺ wave may be carried by subsequent recruitment of RyR2. The identification of TPCs as a family of NAADP receptors may further our understanding of the mechanisms that confer the versatility of Ca²⁺ signalling which is required to regulate such diverse cellular functions as gene expression, fertilization, cell growth, and ultimately cell death.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/888

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter