St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Applied Mathematics
  • Applied Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Applied Mathematics
  • Applied Mathematics Theses
  • View Item
  •   St Andrews Research Repository
  • Mathematics & Statistics (School of)
  • Applied Mathematics
  • Applied Mathematics Theses
  • View Item
  • Register / Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equilibrium and dynamics of collisionless current sheets

Thumbnail
View/Open
Michael G. Harrison PhD thesis.PDF (18.39Mb)
movies.zip (134.7Mb)
Date
24/06/2009
Author
Harrison, Michael George
Supervisor
Neukirch, Thomas
Funder
Science and Technology Facilities Council (STFC)
Keywords
Plasma physics
Vlasov theory
1D Vlasov equilibria
Force-free magnetic fields
Particle in cell simulation
Magnetic reconnection
Kinetic theory
Current sheets
Metadata
Show full item record
Abstract
In this thesis examples of translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM) equilibria are investigated. The 1D VM equilibrium equations are equivalent to the motion of a pseudoparticle in a conservative pseudopotential, with the pseudopotential being proportional to one of the diagonal components of the plasma pressure tensor. A necessary condition on the pseudopotential (plasma pressure) to allow for force-free 1D VM equilibria is formulated. It is shown that linear force-free 1D VM solutions correspond to the case where the pseudopotential is an attractive central potential. The pseudopotential for the force-free Harris sheet is found and a Fourier transform method is used to find the corresponding distribution function. The solution is extended to include a family of equilibria that describe the transition between the Harris sheet and the force-free Harris sheet. These equilibria are used in 2.5D particle-in-cell simulations of magnetic reconnection. The structure of the diffusion region is compared for simulations starting from anti-parallel magnetic field configurations with different strengths of guide field and self-consistent linear and non-linear force-free magnetic fields. It is shown that gradients of off-diagonal components of the electron pressure tensor are the dominant terms that give rise to the reconnection electric field. The typical scale length of the electron pressure tensor components in the weak guide field case is of the order of the electron bounce widths in a field reversal. In the strong guide field case the scale length reduces to the electron Larmor radius in the guide magnetic field.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Applied Mathematics Theses
URI
http://hdl.handle.net/10023/705

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter