The University of St Andrews

Research@StAndrews:FullText >
Mathematics & Statistics (School of) >
Applied Mathematics >
Applied Mathematics Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 8 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
movies.zipAccompanying movies137.94 MBZIPView/Open
Michael G. Harrison PhD thesis.PDFText18.83 MBAdobe PDFView/Open
Title: Equilibrium and dynamics of collisionless current sheets
Authors: Harrison, Michael George
Supervisors: Neukirch, Thomas
Keywords: Plasma physics
Vlasov theory
1D Vlasov equilibria
Force-free magnetic fields
Particle in cell simulation
Magnetic reconnection
Kinetic theory
Current sheets
Issue Date: 24-Jun-2009
Abstract: In this thesis examples of translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM) equilibria are investigated. The 1D VM equilibrium equations are equivalent to the motion of a pseudoparticle in a conservative pseudopotential, with the pseudopotential being proportional to one of the diagonal components of the plasma pressure tensor. A necessary condition on the pseudopotential (plasma pressure) to allow for force-free 1D VM equilibria is formulated. It is shown that linear force-free 1D VM solutions correspond to the case where the pseudopotential is an attractive central potential. The pseudopotential for the force-free Harris sheet is found and a Fourier transform method is used to find the corresponding distribution function. The solution is extended to include a family of equilibria that describe the transition between the Harris sheet and the force-free Harris sheet. These equilibria are used in 2.5D particle-in-cell simulations of magnetic reconnection. The structure of the diffusion region is compared for simulations starting from anti-parallel magnetic field configurations with different strengths of guide field and self-consistent linear and non-linear force-free magnetic fields. It is shown that gradients of off-diagonal components of the electron pressure tensor are the dominant terms that give rise to the reconnection electric field. The typical scale length of the electron pressure tensor components in the weak guide field case is of the order of the electron bounce widths in a field reversal. In the strong guide field case the scale length reduces to the electron Larmor radius in the guide magnetic field.
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Applied Mathematics Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)