St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Medicine (School of)
  • Medicine
  • Medicine Theses
  • View Item
  •   St Andrews Research Repository
  • Medicine (School of)
  • Medicine
  • Medicine Theses
  • View Item
  •   St Andrews Research Repository
  • Medicine (School of)
  • Medicine
  • Medicine Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cloning and characterisation of phospholipase C X-domain containing proteins (PLCXDs)

Thumbnail
View/Open
StevenAlexanderGellatlyPhDThesis.pdf (5.313Mb)
Date
2015
Author
Gellatly, Steven Alexander
Supervisor
Cramb, Gordon
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Members of the phosphoinositide-specific phospholipase C (PI-PLC) enzyme family play a fundamental role in cell signalling pathways by regulating cytosolic calcium and/or the activity of several protein kinases. This thesis reports the identification, molecular cloning and characterisation of a potential seventh sub-class of the PI-PLC enzyme family, the phospholipase C X-domain containing proteins (PLCXDs), which contain only an X domain in their structure. Comparative sequence analysis has identified at least three PLCXD isoforms in the human and mouse genomes (PLCXDs 1, 2 and 3), and at least four isoforms in the European eel (PLCXDs 1-4). Key amino acid residues responsible for the catalytic properties of PI-PLCs were found to be conserved in human, mouse and eel PLCXDs 1, 2 and 3, but were absent in the sequence of eel PLCXD4. PLCXD isoforms displayed unique tissue-specific expression profiles and some similarities between species. Interestingly, in mouse PLCXD1-3 mRNA were found to be predominantly expressed in the brain, however this is yet to be confirmed in humans. Analysis of in situ hybridisation data in mice revealed each PLCXD to be localised in neurons within different brain regions, highly suggestive of unique roles in brain function. Furthermore, the levels of PLCXD3 protein were reduced by more than 99% in cerebella samples from a mouse model of neurodegeneration (Harlequin mouse) compared to control mice. Human PLCXD1, 2 and 3 were found to increase phosphoinositide turnover when overexpressed in the HeLa cell line, and recombinant PLCXD3, purified to homogeneity from E. coli, was found to interact with various phosphoinositides including PI(4,5)P₂. ³¹P-NMR analysis of PI(4,5)P₂ and PI before and after the addition of PLCXD3 purified from HeLa cells and E. coli revealed no difference in the ³¹P spectra whereas expected chemical shifts were seen following the addition of purified bacterial PI-PLC. Significant formation of inclusion bodies was noted when human PLCXDs 1, 2 and 3 were expressed as recombinant proteins in E. coli. Different strategies aimed at optimising the expression of recombinant PLCXD1, 2 and 3, including the use of different fusion proteins and screening expression in E. coli, mammalian and insect cells had limited success, with the best soluble expression only seen with PLCXD3 in insect cells. Attempts to scale-up the purification of PLCXD3 from insect cells to provide sufficient protein for enzyme assays and crystal screens were unsuccessful. The results presented herein suggest that these novel proteins possess distinct and as yet uncharacterised tissue-specific roles in cell physiology.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Medicine Theses
URI
http://hdl.handle.net/10023/7033

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter