St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The environments in which stars and circumstellar discs form

Thumbnail
View/Open
Christopher J. Poulton PhD thesis.PDF (14.32Mb)
Date
2008
Author
Poulton, Christopher John
Supervisor
Greaves, Jane Sophia
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
In this thesis, images of a debris disc are used to examine the evidence for the presence of a Neptune-like planet around ε Eridani and detections of protoplanetary discs are used to investigate the evidence for star and future planet formation. A χ² analysis of the movement of clumps in the ε Eridani debris disc is presented using 850 μm SCUBA data taken over a 4 year period and compared with results from simulated data. A rotation is detected at the 2σ level and is faster than the Keplerian rate, consistent with theoretical models in which dust trapped in mean motion resonances tracks a planet orbiting the star at ≈26 AU. Future observations that could be taken with SCUBA-2 are also simulated and demonstrate that the true rotation rate cannot be recovered without the identification of the background sources aligned with the clumpy debris disc. Near and mid infrared observations are used to perform a survey of YSOs in the Rosette Molecular Cloud. Although triggering by compression of the molecular cloud by the expanding HII region at the centre of the Rosette Nebula is a possible origin for some of the recent star formation, the majority of the active star formation is occurring in already dense regions of the cloud not compressed by the expansion of the HII region. Mid-infrared data for W4 and SCUBA data for the star forming region AFGL 333 are also presented. A survey of YSOs reveals that whilst some young sources are coincident with the W4 loop, consistent with a scenario of triggered star formation in a swept-up shell, several young sources are found to be forming outside of this ring. The dust temperature and mass of AFGL 333 are estimated and the result implies a star formation efficiency of ~4% in the W4 loop.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/700

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter