Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorFedak, Mike
dc.contributor.authorBoehme, Lars
dc.coverage.spatial192en
dc.date.accessioned2009-05-14T14:31:01Z
dc.date.available2009-05-14T14:31:01Z
dc.date.issued2008-11-27
dc.identifier.urihttps://hdl.handle.net/10023/687
dc.description.abstractIn this thesis, I describe large-scale and small-scale features of the Antarctic Circumpolar Current (ACC) by merging conductivity-temperature-depth (CTD) data obtained by novel animal-borne sensors with data obtained by more conventional means. Twenty-one CTD-Satellite Relay Data Loggers (CTD-SRDLs) were attached to Southern elephant seals (Mirounga leonina) on South Georgia in 2004 and 2005. This was part of a larger international study (Southern Elephant Seals as Oceanographic Samplers; SEaOS), in which I played a major role in developing the oceanographic approach used to integrate physical data from a range of sources, and the means to link biological findings to oceanographic parameters. The development of animal-borne oceanographic sensors and their potential place within an ocean observing system is reviewed initially. Then, I describe the Series 9000 CTD-SRDL in detail, discussing its performance in the lab and during two field experiences with Southern elephant seals and Weddell seals (Leptonychotes weddellii ). Following this, a detailed study of the ACC frontal system in the South Atlantic is presented that uses merged Argo float data and CTD-SRDL data. The structure of the frontal field revealed by this unique dataset is examined, and unprecedented insight into its variability is obtained. Amongst the important findings is that, contrary to most climate models, our in situ data suggest a northward shift of the ACC east of 40W in 2004 and 2005 compared to previous work. Next, two CTD-SRDL sections are presented to identify the locations of the ACC fronts across Drake Passage, and an empirical relationship between upper ocean temperature and baroclinic mass transport is used to determine the transport through Drake Passage at the times of the sections. This technique is a powerful complement to more conventional means of data collection in this region, especially given the ability of the seals to conduct "sections" at times when ship-based fieldwork is logistically most challenging, i.e. in the winter time. The CTD-SRDLs do not only record hydrographic data, but simultaneously record seal movements and diving behavior. This enables insight to be obtained on the behavioral and physiological responses of Southern elephant seals to spatial environmental variability throughout their circumpolar range. The resulting energetic consequences of these variations could help explain recently observed spatially varying population trends. With a stable population at South Georgia and declining populations at Kerguelen and Macquarie Island. This study also highlights the benefits to the sensorcarrying animals themselves by showing the usefulness of this approach in examining the sensitivity of top predators to global and regional-scale climate variability. More importantly, I conclude that, by implementing animal-borne sensors into ocean observing strategies, we not only gain information about global ocean circulation and enhance our understanding of climate and the corresponding heat and salt transports, but at the same time we increase our knowledge about ocean’s top predators, their life history and their sensitivity to climate change.en
dc.format.extent15595746 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.subjectOceanographyen
dc.subjectElephant sealen
dc.subjectMarine mammalen
dc.subjectClimate changeen
dc.subjectAntarcticaen
dc.subjectAntarctic Circumpolar Currenten
dc.subjectDrake Passageen
dc.subjectSouth Georgiaen
dc.titleThe frontal system of the Antarctic Circumpolar Current : marine mammals as ocean explorersen
dc.typeThesisen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.publisher.institutionThe University of St Andrewsen
dc.publisher.departmentSea Mammal Research Uniten


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution 3.0 Unported