Inhomogeneous self-similar sets and measures
View/ Open
Date
2008Author
Supervisor
Keywords
Metadata
Show full item recordAltmetrics Handle Statistics
Abstract
The thesis consists of four main chapters. The first chapter includes an introduction to inhomogeneous self-similar sets and
measures. In particular, we show that these sets and measures
are natural generalizations of the well known self-similar sets and
measures. We then investigate the structure of these sets and measures. In the second chapter we study various fractal
dimensions (Hausdorff, packing and box dimensions) of inhomogeneous self-similar sets and compare our results with the well-known results for (ordinary)
self-similar sets. In the third chapter we investigate the L^{q}
spectra and the Renyi dimensions of inhomogeneous self-similar
measures and prove that new multifractal phenomena, not exhibited by (ordinary) self-similar measures, appear in the inhomogeneous case.
Namely, we show that inhomogeneous self-similar measures may
have phase transitions which is in sharp contrast to the
behaviour of the
L^{q} spectra
of (ordinary) self-similar
measures satisfying the Open Set Condition. Then we study the significantly more difficult problem of computing the multifractal spectra
of inhomogeneous self-similar measures. We show that
the multifractal spectra
of
inhomogeneous self-similar
measures
may be non-concave which is again in sharp contrast to the
behaviour of the
multifractal spectra
of (ordinary) self-similar
measures satisfying the Open Set Condition. Then we present a number of
applications of our results. Many of them are related to the notoriously difficult problem of computing (or simply obtaining non-trivial bounds) for the multifractal spectra of self-similar measures not satisfying the Open Set Condition. More precisely, we will show that our results provide a systematic approach to obtain non-trivial bounds (and in some cases even exact values) for the multifractal spectra of several large and interesting classes of self-similar measures not satisfying the Open Set Condition. In the fourth chapter we investigate the asymptotic behaviour of the Fourier transforms of
inhomogeneous self-similar measures and again we present a
number of applications of our results, in particular to non-linear
self-similar measures.
Type
Thesis, PhD Doctor of Philosophy
Rights
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
http://creativecommons.org/licenses/by-nc-nd/3.0/
Collections
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.