Cayley automaton semigroups
Abstract
Let S be a semigroup, C(S) the automaton constructed from the right Cayley
graph of S with respect to all of S as the generating set and ∑(C(S)) the
automaton semigroup constructed from C(S). Such semigroups are termed
Cayley automaton semigroups. For a given semigroup S we aim to establish
connections between S and ∑(C(S)).
For a finite monogenic semigroup S with a non-trivial cyclic subgroup C[sub]n we
show that ∑(C(S)) is a small extension of a free semigroup of rank n, and
that in the case of a trivial subgroup ∑(C(S)) is finite.
The notion of invariance is considered and we examine those semigroups S
satisfying S ≅ ∑(C(S)). We classify which bands satisfy this, showing that
they are those bands with faithful left-regular representations, but exhibit
examples outwith this classification. In doing so we answer an open problem
of Cain.
Following this, we consider iterations of the construction and show that for
any n there exists a semigroup where we can iterate the construction n times
before reaching a semigroup satisfying S ≅ ∑(C(S)). We also give an example of a semigroup where repeated iteration never produces a semigroup
satisfying S ≅ ∑(C(S)).
Cayley automaton semigroups of infinite semigroups are also considered and
we generalise and extend a result of Silva and Steinberg to cancellative semigroups. We also construct the Cayley automaton semigroup of the bicyclic
monoid, showing in particular that it is not finitely generated.
Type
Thesis, PhD Doctor of Philosophy
Collections
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.