The University of St Andrews

Research@StAndrews:FullText >
Biology (School of) >
Biology >
Biology Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 23 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Benjamin G. Hale PhD thesis.PDF4.43 MBAdobe PDFView/Open
Title: Influenza A viruses and PI3K signalling
Authors: Hale, Benjamin G.
Supervisors: Randall, R. E.
Keywords: Influenza
Issue Date: 28-Sep-2007
Abstract: The influenza A virus non-structural (NS1) protein is multifunctional, and during virus-infection NS1 interacts with several factors in order to manipulate host-cell processes. This study reports that NS1 binds directly to p85β, a regulatory subunit of phosphoinositide 3-kinase (PI3K), but not to the related p85α. Expression of NS1 was sufficient to activate PI3K and cause the phosphorylation of a downstream mediator of PI3K signalling, Akt. However, in virus-infected MDCK cells, the kinetics of Akt phosphorylation did not correlate with NS1 expression, and suggested that negative regulation of this signalling pathway occurs subsequent to ~8h post-infection. Mapping studies showed that the NS1:p85β interaction is primarily mediated by the NS1 C-terminal domain and the p85β inter-SH2 (Src homology 2) domain. Additionally, the highly conserved tyrosine at residue 89 (Y89) of NS1 was found to be important for binding and activating PI3K in a phosphorylation-independent manner. The inter-SH2 domain of p85β is a coiled-coil structure that acts as a scaffold for the p110 catalytic subunit of PI3K. As NS1 does not displace p110 from the inter-SH2 domain, a model is proposed whereby NS1 forms an active heterotrimeric complex with PI3K, and disrupts the ability of p85β to control p110 function. Biological studies revealed that a mutant influenza A virus (Udorn/72) expressing NS1 with phenylalanine substituted for tyrosine-89 (Y89F) exhibited a small-plaque phenotype, and grew more slowly in MDCK cells than wild-type virus. Unexpectedly, another mutant influenza A virus strain (WSN/33) expressing NS1-Y89F was not attenuated in MDCK cells, yet appeared to be less pathogenic than wild-type in vivo. Overall, these data indicate a role for NS1-mediated PI3K activation in efficient influenza A virus replication. The potential application of this work to the design of novel anti-influenza drugs and vaccine production is discussed.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Biology Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)