St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning for systems pathology

Thumbnail
View/Open
WimVerleyenPhDThesis.pdf (5.842Mb)
WimVerleyenPhDThesis_DataSets.xls (268.5Kb)
Date
2013
Author
Verleyen, Wim
Supervisor
Stokes, Anne (V. Anne)
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Systems pathology attempts to introduce more holistic approaches towards pathology and attempts to integrate clinicopathological information with “-omics” technology. This doctorate researches two examples of a systems approach for pathology: (1) a personalized patient output prediction for ovarian cancer and (2) an analytical approach differentiates between individual and collective tumour invasion. During the personalized patient output prediction for ovarian cancer study, clinicopathological measurements and proteomic biomarkers are analysed with a set of newly engineered bioinformatic tools. These tools are based upon feature selection, survival analysis with Cox proportional hazards regression, and a novel Monte Carlo approach. Clinical and pathological data proves to have highly significant information content, as expected; however, molecular data has little information content alone, and is only significant when selected most-informative variables are placed in the context of the patient’s clinical and pathological measures. Furthermore, classifiers based on support vector machines (SVMs) that predict one-year PFS and three-year OS with high accuracy, show how the addition of carefully selected molecular measures to clinical and pathological knowledge can enable personalized prognosis predictions. Finally, the high-performance of these classifiers are validated on an additional data set. A second study, an analytical approach differentiates between individual and collective tumour invasion, analyses a set of morphological measures. These morphological measurements are collected with a newly developed process using automated imaging analysis for data collection in combination with a Bayesian network analysis to probabilistically connect morphological variables with tumour invasion modes. Between an individual and collective invasion mode, cell-cell contact is the most discriminating morphological feature. Smaller invading groups were typified by smoother cellular surfaces than those invading collectively in larger groups. Interestingly, elongation was evident in all invading cell groups and was not a specific feature of single cell invasion as a surrogate of epithelialmesenchymal transition. In conclusion, the combination of automated imaging analysis and Bayesian network analysis provides an insight into morphological variables associated with transition of cancer cells between invasion modes. We show that only two morphologically distinct modes of invasion exist. The two studies performed in this thesis illustrate the potential of a systems approach for pathology and illustrate the need of quantitative approaches in order to reveal the system behind pathology.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/4512

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter