An analytical, phenomenological and numerical study of geophysical and magnetohydrodynamic turbulence in two dimensions
Abstract
In this thesis I study a variety of two-dimensional turbulent systems using a
mixed analytical, phenomenological and numerical approach. The systems under
consideration are governed by the two-dimensional Navier-Stokes (2DNS),
surface quasigeostrophic (SQG), alpha-turbulence and magnetohydrodynamic (MHD)
equations. The main analytical focus is on the number of degrees of freedom
of a given system, defined as the least value $N$ such that all
$n$-dimensional ($n$ ≥ $N$) volume elements along a given trajectory contract
during the course of evolution. By equating $N$ with the number of active
Fourier-space modes, that is the number of modes in the inertial range, and
assuming power-law spectra in the inertial range, the scaling of $N$ with the
Reynolds number $Re$ allows bounds to be put on the exponent of the spectrum.
This allows the recovery of analytic results that have until now only been
derived phenomenologically, such as the $k$[superscript(-5/3)] energy spectrum in the
energy inertial range in SQG turbulence. Phenomenologically I study the modal
interactions that control the transfer of various conserved quantities. Among
other results I show that in MHD dynamo triads (those converting kinetic into
magnetic energy) are associated with a direct magnetic energy flux while
anti-dynamo triads (those converting magnetic into kinetic energy) are
associated with an inverse magnetic energy flux. As both dynamo and anti-dynamo
interacting triads are integral parts of the direct energy transfer, the
anti-dynamo inverse flux partially neutralises the dynamo direct flux, arguably
resulting in relatively weak direct energy transfer and giving rise to dynamo
saturation. These theoretical results are backed up by high resolution
numerical simulations, out of which have emerged some new results such as the
suggestion that for alpha turbulence the generalised enstrophy spectra are not
closely approximated by those that have been derived phenomenologically, and
new theories may be needed in order to explain them.
Type
Thesis, PhD Doctor of Philosophy
Rights
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
http://creativecommons.org/licenses/by-nc-nd/3.0/
Collections
Description of related resources
Blackbourn, L. A. K. & Tran C. V. (2011) Effects of friction on two-dimensional Navier-Stokes turbulence. Phys. Rev. E 84, 046322Blackbourn, L. A. K. & Tran C. V. (2012) On energetics and inertial range scaling laws of two-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 703, 238-254
Blackbourn, L. A. K. & Tran C. V. (2013) Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the strong advection regime. Phys. Fluids, submitted
Tran, C. V. & Blackbourn, L. (2009) Number of degrees of freedom of two-dimensional turbulence. Phys. Rev. E 79, 056308
Tran, C. V. & Blackbourn, L. A. K. (2012) A dynamical systems approach to fluid turbulence. Fluid Dyn. Res. 44, 031417
Tran, C. V. & Blackbourn, L. A. K. & Scott R. K. (2011) Number of degrees of freedom and energy spectrum of surface quasi-geostrophic turbulence. J. Fluid Mech. 684, 427-440
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.