St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of tidal interactions on the properties and evolution of hot-Jupiter planetary systems.

Thumbnail
View/Open
DavidBrownPhDThesis.pdf (55.84Mb)
Date
29/11/2013
Author
Brown, David John Alexander
Supervisor
Cameron, A. C.
Keywords
Exoplanets
Extra-solar planets
Planetary systems
Tidal interactions
Radial velocities
Stars
Stellar ages
Gyrochronology
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Thanks to a range of discovery methods that are sensitive to different regions of parameter space, we now know of over 900 planets in over 700 planetary systems. This large population has allowed exoplanetary scientists to move away from a focus on simple discovery, and towards efforts to study the bigger pictures of planetary system formation and evolution. The interactions between planets and their host stars have proven to be varied in both mechanisms and scope. In particular, tidal interactions seem to affect both the physical and dynamical properties of planetary systems, but characterising the broader implications of this has proven challenging. In this thesis I present work that investigates different aspects of tidal interactions, in order to uncover the scope of their influence of planetary system evolution. I compare two different age calculation methods using a large sample of exoplanet and brown dwarf host stars, and find a tendency for stellar model fitting to supply older age estimates than gyrochronology, the evaluation of a star's age through its rotation (Barnes 2007). Investigating possible sources of this discrepancy suggests that angular momentum exchange through the action of tidal forces might be the cause. I then select two systems from my sample, and investigate the effect of tidal interactions on their planetary orbits and stellar spin using a forward integration scheme. By fitting the resulting evolutionary tracks to the observed eccentricity, semi-major axis and stellar rotation rate, and to the stellar age derived from isochronal fitting, I am able to place constraints on tidal dissipation in these systems. I find that the majority of evolutionary histories consistent with my results imply that the stars have been spun up through tidal interactions as the planets spiral towards their Roche limits. I also consider the influence of tidal interactions on the alignment between planetary orbits and stellar spin, presenting new measurements of the projected spin-orbit alignment angle, λ, for six hot Jupiters. I consider my results in the context of the full ensemble of measurements, and find that they support a previously identified trend in alignment angle with tidal timescale, implying that tidal realignment might be responsible for patterns observed in the λ distribution.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
Description of related resources
Brown, D. J. A. et al. (2011), Monthly Notices of the Royal Astronomical Society, Issue 415, pp. 605-618
Brown, D. J. A. et al. (2012), Monthly Notices of the Royal Astronomical Society, Issue 423, pp. 1503-1520
Brown, D. J. A. et al. (2012), Astrophysical Journal, Issue 760, pp. 139
URI
http://hdl.handle.net/10023/4181

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter