Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorSchiemann, Olav
dc.contributor.advisorSigurdsson, Snorri T.
dc.contributor.authorReginsson, Gunnar Widtfeldt
dc.coverage.spatial372en_US
dc.date.accessioned2013-06-13T08:43:30Z
dc.date.available2013-06-13T08:43:30Z
dc.date.issued2013-06-26
dc.identifieruk.bl.ethos.574784 
dc.identifier.urihttps://hdl.handle.net/10023/3680
dc.description.abstractThe function of biomacromolecules is controlled by their structure and conformational flexibility. Investigating the structure of biologically important macromolecules can, therefore, yield information that could explain their complex biological function. In addition to X ray crystallography and nuclear magnetic resonance (NMR) methods, pulsed electron paramagnetic resonance (EPR) methods, in particular the pulsed electron electron double resonance (PELDOR) technique has, during the last decade, become a valuable tool for structural determination of macromolecules. Long range distance constraints obtained from pulsed EPR measurements, make it possible to carry out structural refinements on structures from NMR and X ray methods. In addition, EPR yields distance distributions that give information about structural flexibility. The use of EPR for structural studies of biomacromolecules requires in most cases site specific incorporation of paramagnetic centres known as spin labelling. To date, spin labelling nucleic acids has required complex spin labelling chemistry. The first application of a site directed and noncovalent spin labelling method for distance measurements on DNA is described. It is demonstrated that noncovalent spin labelling with a rigid spin label can afford detailed information on internal DNA dynamics using PELDOR. Furthermore, it is shown that noncovalent spin labelling can be used to study DNA protein complexes. PELDOR can also yield information about spin label orientation. Therefore, spin labels with limited flexibility can be used to measure the relative orientation of the spin labelled sites. Although information on orientation can be obtained from 9.7 GHz PELDOR measurements in selected applications, measurements at 97 GHz or higher, increases orientation selection. It is shown that PELDOR measurements on semi rigid and rigid nitroxide biradicals using a home built high power 97 GHz EPR spectrometer (Hiper) and model based simulations yield quantitative information on spin label orientations and dynamics. The most widely used spin labels for EPR studies on biomacromolecules are the aminoxyl (nitroxide) radicals. The major drawbacks of nitroxide spin labels include low sensitivity for distance measurements, fast spin spin relaxation in solution and limited stability in reducing environments. Carbon centered triarylmethyl (trityl) radicals have properties that could eliminate some of the limitations of nitroxide spin labels. To evaluate the use of trityl spin labels for nanometer distance measurements, models systems with trityl and nitroxide spin labels were measured using PELDOR and Double Quantum Coherence (DQC). This study shows that trityl spin labels yield reliable information on interlabel distances and dynamics, establishing the trityl radical as a viable spin label for structural studies on biomacromolecules.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subjectEPRen_US
dc.subjectPELDORen_US
dc.subjectDEERen_US
dc.subjectDistance measurementsen_US
dc.subjectFree radicalsen_US
dc.subjectSpin labelsen_US
dc.subjectNitroxide radicalsen_US
dc.subjectTrityl radicalsen_US
dc.subjectBiomolecular structureen_US
dc.subjectNucleic acid structureen_US
dc.subject.lccQH324.9S62R4
dc.subject.lcshBiomolecules--Structureen_US
dc.subject.lcshElectron paramagnetic resonance spectroscopyen_US
dc.subject.lcshSpin labelsen_US
dc.subject.lcshNitroxidesen_US
dc.subject.lcshTriarylmethylsen_US
dc.titleDistance measurements using pulsed EPR : noncovalently bound nitroxide and trityl spin labelsen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.publisher.departmentUniversity of Icelanden_US


This item appears in the following Collection(s)

Show simple item record