St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functional, biochemical and structural analyses of two plasmodium membrane proteins

Thumbnail
View/Open
AmyClarke_PhDThesis.pdf (5.721Mb)
Date
26/06/2013
Author
Clarke, Amy Marigot
Funder
Biotechnology and Biological Sciences Research Council (BBSRC)
Keywords
Plasmodium
Membrane protein
Transporter
Protein expression
Formate nitrite
Antigenic variation
Metadata
Show full item record
Abstract
Protozoan parasites of the genus Plasmodium are the causative agent of malaria. The most severe form of human malaria is caused by P. falciparum, responsible for approximately three quarters of a million deaths each year. One major problem in the treatment of malaria is resistance to existing chemotherapies. Consequently, there is an urgent need to identify and validate novel drug targets. A possible recently identified drug target is the PfNitA protein of P. falciparum which contains orthologues in other Plasmodium species but is absent from humans. The gene is annotated as a putative formate-nitrite transporter and orthologues are found in a range of prokaryotes as well as the lower eukaryotes algae and fungi. To determine the biological function of the protein, pfnita was expressed in Escherichia coli strains lacking the endogenous formate and nitrite transporters. In order to analyse the essentiality of the gene a reverse genetics approach was taken and the data discussed. Results indicate that the PfNitA protein is located in the plasma membrane and digestive vacuole of intraerythrocytic parasites suggesting a role in the uptake or excretion of metabolites. A second complexity with regard to treatment is the lack of a vaccine. A problem in crating a vaccine is antigenic variation. The PIR family of proteins contain a so-called hypervariable domain that has led to the suggestion that the family may play a role in antigenic variation. The objective of the work carried out in this thesis was to investigate the topology and structure of the PcCir2 protein of Plasmodium chabaudi, using E. coli as the expression host. The topology of Cir2 has been examined by means of reporter fusions and overexpression/purification studies undertaken towards crystallisation. As the PcCir2 amino acid sequence does not show significant homology to other proteins, structural data may provide insights into potential functional or binding domains.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/3603

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter