Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorDholakia, Kishan
dc.contributor.authorLivesey, John Gregor
dc.coverage.spatialviii, 216, xiv p.en
dc.date.accessioned2007-06-21T11:37:21Z
dc.date.available2007-06-21T11:37:21Z
dc.date.issued2007
dc.identifier.urihttps://hdl.handle.net/10023/356
dc.description.abstractIn this thesis I describe experimental work and present data on the guiding of Rubidium atoms along free-space propagating light beams as well as within hollow core glass fibres, namely photonic crystal fibres. I describe experiments, laser systems and vacuum trap assemblies designed to facilitate this guiding. These experiments are intended to aid progression within the field of cold atom guidance wherein narrow diameter, long distance hollow-fibre guides are a current goal. Realisation of these guides could lead to promising applications such as atom interferometers and spatially accurate, multi-source, atom depositors. Herein, guided fluxes are observed in free-space guiding experiments for distances up to 50mm and up to 10GHz red-detuning from resonance. Additionally hollow-core, Kagome structured, quasi- and true-photonic crystal fibres are characterised. Finally a number of detailed fibre-guiding magneto-optic traps are developed. Both cold atomic-beams and cold atomic clouds are reliably positioned above fibre entrance facets in conjunction with a guiding laser beam coupled into the fibre core. Issues regarding optical flux detection outwith fibre confinement appear to have hindered observation of guided atoms. A far more sensitive detection system has been developed for use in current, ongoing fibre-guide experiments.en
dc.format.extent11187214 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject.lccTA1800.L5
dc.subject.lcshOptical wave guidesen
dc.subject.lcshAtoms--Coolingen
dc.subject.lcshLaser coolingen
dc.subject.lcshOptical fibresen
dc.titleAtom guiding in free-space light beams and photonic crystal fibresen
dc.typeThesisen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.publisher.institutionThe University of St Andrewsen


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported