The University of St Andrews

Research@StAndrews:FullText >
Biology (School of) >
Biology >
Biology Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 6 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
Thefulltextofthisdocumentisnotavailable.pdf4.23 kBAdobe PDFView/Open
Title: Evolutionary genetics and genomics of the female side of sexual interactions in Drosophila
Authors: Immonen, Elina
Supervisors: Ritchie, Michael Gordon
Keywords: Sexual selection
Gene expression
Experimental evolution
Issue Date: 30-Nov-2012
Abstract: Sexual interactions play an important role in generating sexual selection and antagonistic co-evolution. These forces can shape differences between the sexes, but also have the potential to generate population divergence and contribute to speciation. The aim in this thesis was to provide new insights into the genes involved in different stages of female sexual interactions, using Drosophila as a model system. In chapter 2 I tested whether a candidate gene (period) that influences species-specific rhythmic characteristics in male courtship song in D. melanogaster also has a pleiotropic effect on female song preference. Using mutant and transgenic strains I found support for this. In chapter 3 I examined further how females respond to the song at the level of gene expression, using microarrays. Expression profiles revealed modest changes in transcripts abundance overall, which were dominated by antennal olfactory genes, neuropeptide encoding genes and immunity genes. Many of these have previously been found to respond to mating. In chapter 4 I therefore studied further two of these genes, TurandotM and TurandotC and their role in female post-mating fitness. Using RNA interference I found that knocking down these genes influenced immediate fecundity. In chapter 5 I focused on analysing post-mating gene expression patterns in relation to sexual selection in D. pseudoobscura using microarrays. I explored the consequences of experimental variation in female promiscuity on gene expression divergence as a whole, and in response to mating. I found large-scale expression divergence between monandrous and polyandrous females after 100 generations of experimental evolution. Experimental polyandry increased the expression of genes that show female-biased expression in wild-type individuals and decreased male- biased gene expression. Females experiencing no sexual selection showed the opposite pattern. Out of the genes affected by mating, the majority showed increased expression in polyandrous compared to monandrous females, with enrichment e.g. in oogenesis-related genes.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Biology Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)