Show simple item record

Files in this item


Item metadata

dc.contributor.advisorLee, Stephen
dc.contributor.authorVenkataramana, Vikash
dc.description.abstractMagnetic recording media refers to the disc shaped thin film magnetic medium present inside the hard disk drive of a computer. Magnetic recording is an important function of the hard disk drive by which information such as text, pictures, audio and videos are stored. Information is broken down to a simple binary format and is stored as magnetised bits along the tracks of the disk forming the hard drive. Over the years advancements in research on the type of magnetic materials used has allowed increased data storage capacities by reducing magnetic bit sizes. It is with this advancement in magnetic data storage, that we have today’s hard disk drive technology, which uses a perpendicular magnetic medium to store data. A perpendicular magnetic medium is a multi-layered magnetic thin film structure with the topmost layer comprising nanoscale magnetic grains of high perpendicular anisotropy. The topmost recording layer (RL) is mapped into individual bits of 80-100 nm² area that consist of 5-10 nm diameter CoCrPt grains, embedded in an oxide matrix. A bit area is defined to ensure a significant number of stable grains allowing data to be stored in each bit as a ‘0’ or a ‘1’ depending on its switched magnetic state. The magnetic grains if sputtered below a threshold grain size tend to suffer from thermal fluctuation and instability due to super-paramagnetic effects, hence bringing limitations to grain size. As a result of this, research in recent years has been directed at introducing a softer magnetic exchange coupled composite (ECC) layer above the recording layer. This layer facilitates the delicate balance of switching smaller grains with strong magneto-crystalline anisotropy at lower magnetic fields, by exchange coupling with the CoCrPt grains in the recording layer. However this technique of increasing the efficiency in the perpendicular magnetic medium by introducing ‘facilitating’ layers is an area that is still being widely researched and understood. Although numerous surface and bulk analysis techniques exist to study magnetic and surface properties of these materials, there is limited information on the structural and magnetic properties of these materials at the nanoscale level. The reported work investigates the structural and magnetic properties of the magnetic grains and multi-layers in the perpendicular magnetic medium using polarised neutron scattering and reflectivity techniques. The work investigates the structural and magnetic properties of the CoCrPt grains, apart from understanding the CoCrPt magnetic grain switching. The work also investigates the magnetisation in the layers of the thin film perpendicular media structure using polarised neutron reflectivity (PNR). Using polarised small angle neutron scattering (PolSANS), it has been shown that ferromagnetic ordered core region of the CoCrPt grain in the recording layer is smaller than the physical CoCrPt granular structure. The magnetic switching behaviour of the CoCrPt grain at different magnetic fields is also analysed and the experimental PolSANS data is fitted with non-interacting size-dependent analytical grain switching models. This result provides significant evidence that the magnetic anisotropy increases with grain size, with larger magnetic grains having larger magnetic anisotropy. Polarised neutron scattering experiments are carried out with the magnetically softer exchange coupled composite (ECC) layer included in the thin film magnetic structure. The first experiments investigate if the ECC layer contributes to the nuclear and magnetic interference scattering term in the experimenting scattering data. The experiments clearly show that there is no contribution from the ECC layer in the nuclear and magnetic scattering interference term. The role of the ECC layer in the magnetic switching process is then investigated at different magnetic fields. The ECC layer was found to influence the size-dependent magnetic grain switching of the CoCrPt grains in the recording layer and a detailed investigation is presented in the reported work. Polarised neutron reflectivity (PNR) experiments have also been carried out with the ECC layer on the perpendicular magnetic media samples. These experiments investigate the composition and thickness of the thin film structure, while also providing information on the magnetic state of the thin films under the influence of an in-plane magnetic field.The in-plane magnetisation in the recording and ECC layer is determined at different in-plane magnetic fields. The magnetisation values determined for the ECC layer and the recording layer (RL) at different in-plane magnetic fields help better understand the differences in their magnetic properties.en_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.subjectNeutron scatteringen_US
dc.subjectMagnetic materialsen_US
dc.subjectHard disk driveen_US
dc.subjectPerpendicular magnetic mediaen_US
dc.subjectMagnetic mediaen_US
dc.subjectPolarised neutronsen_US
dc.subjectPolarised neutron reflectivityen_US
dc.subject.lcshMagnetic memory (Computers)en_US
dc.subject.lcshMagnetic materials--Analysisen_US
dc.subject.lcshData disk drivesen_US
dc.titleNeutrons to probe nanoscale magnetism in perpendicular magnetic recording mediaen_US
dc.contributor.sponsorScottish Universities Physics Alliance (SUPA)en_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US

The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported