St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Medicine (School of)
  • Medicine
  • Medicine Theses
  • View Item
  •   St Andrews Research Repository
  • Medicine (School of)
  • Medicine
  • Medicine Theses
  • View Item
  •   St Andrews Research Repository
  • Medicine (School of)
  • Medicine
  • Medicine Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The role of ChlR1 in DNA replication, DNA damage repair and cohesion establishment

Thumbnail
View/Open
ChristopherWassonPhDThesis.pdf (8.778Mb)
Date
2011
Author
Wasson, Christopher
Supervisor
Parish, Joanna Louise
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
Sister chromatid cohesion is essential for the equal distribution of genetic material in mitosis. The cohesin complex plays a central role in the establishment of sister chromatid cohesion. The cohesin complex is a ring shaped structure that encircles sister chromatids prior to the onset of anaphase ensuring equal distribution of genetic material. The DEAD/H DNA helicase ChlR1 is important in the establishment of sister chromatid cohesion. ChlR1 interacts with the cohesin complex and is required for the loading of cohesin onto DNA. Cohesin is loaded onto the DNA during DNA replication. Here I identified a novel interacting partner of ChlR1. The multifunctional DNA binding protein FHL2 was shown to interact with ChlR1, and FHL2 was shown to have a role in sister chromatid cohesion since depletion of FHL2 resulted in abnormal metaphase spreads and reduced centromeric cohesion. These sister chromatid cohesion defects also result in a G₂/M delay. Here I show an additional function of ChlR1 in the repair of DNA damage. ChlR1 was required for the repair of DNA double strand breaks and ChlR1 was recruited to DNA double strand breaks. Furthermore the function of ChlR1 in DNA double strand break repair is S phase specific. This suggests that ChlR1 is important in the homology recombination repair pathway. I also show that ChlR1 is important in DNA replication. Depletion of ChlR1 results in inefficient DNA replication. In addition depletion of ChlR1 results in defects in DNA replication after hydroxyurea treatment. The results in this thesis shed light on novel functions of the DNA helicase ChlR1 in DNA replication and DNA damage repair and the multifunctional DNA binding protein FHL2 in cohesion establishment.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Medicine Theses
URI
http://hdl.handle.net/10023/3134

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter