Show simple item record

Files in this item


Item metadata

dc.contributor.advisorRobertson, Duncan Alexander
dc.contributor.authorGallacher, Tom F.
dc.description.abstractThis thesis discusses optoelectronic devices at mm-wave frequencies, focusing on optoelectronic beamforming and non-mechanical beam steering based on an optically excited Fresnel zone plate plasma. The optically controlled zone plate, termed the photo-injected Fresnel zone plate antenna (piFZPA) within this work, is introduced and a comprehensive theoretical framework developed. The design and optimisation of Fresnel zone plates are detailed, which determine the inherent performance of the piFZPA. A range of zone plates were designed, fabricated, and characterised at 94 GHz with up to 46 dBi gain, -26 dB sidelobe levels, and 67% aperture efficiency being measured for a quarter-wave design. The control of (sub) mm-wave beams by optical modulation of the complex permittivity of a semiconductor substrate is discussed. The significance of the free-carrier plasma dynamics, the effective lifetime, surface recombination, and the limits of the substrate which are imposed by the spatial resolution of the free-carrier plasma are highlighted, with the optimisation of these parameters discussed. The passivation quality of high-resistivity silicon wafers were characterised using a mm-wave photoconductance decay method, which yielded lifetime improvements from τ[subscript(eff)] = 60 us up to τ[subscript(eff)] ≈ 4,000 us, resulting in lowered recombination velocities (S = 15 cm/s). W-band characterisations of the passivated wafers illustrate the significance of surface recombination, with measured attenuations of up to 24 dB. Novel theoretical models are developed throughout this thesis, which yield insight into the requirements of optoelectronic devices, and are shown to agree well with measured data. The theoretical framework developed details the requirements, limitations, suitability, and design of piFZPAs at any frequency. A range of transmission-type piFZPAs are demonstrated and characterised at 94 GHz, both on-axis and off-axis, based on a novel architecture, with up to 8% aperture efficiency. Finally, the hybridisation of the piFZPA technique and well established visible display technologies, which has been developed throughout this thesis, enable low-cost, simple, and highly flexible optoelectronic devices, highlighting this method as an attractive solution to adaptive beamforming and non-mechanical steering at mm-wave and submm-wave frequencies.en_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.subjectFresnel zone plateen_US
dc.subjectBeam steeringen_US
dc.subjectOptically controlled antennaen_US
dc.subjectPhoto-injected Fresnel zone plateen_US
dc.subjectBeam formingen_US
dc.subject.lcshOptoelectronic devicesen_US
dc.subject.lcshMillimeter wave devicesen_US
dc.subject.lcshBeam opticsen_US
dc.subject.lcshZone platesen_US
dc.titleOptoelectronic modulation of mm-wave beams using a photo-injected semiconductor substrateen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US

The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported