St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Low temperature magnetisation properties of the spin ice material Dy₂Ti₂O₇

Thumbnail
View/Open
DemianGSlobinskyPhDThesis.pdf (17.27Mb)
Date
06/2012
Author
Slobinsky, Demian G.
Supervisor
Mackenzie, Andrew
Grigera, Santiago A.
Funder
Engineering and Physical Sciences Research Council (EPSRC)
Keywords
Spin ice
Monopoles
Frustration
Geometrical frustration
Pyrochlore
Tetrahedron
Out-of-equilibrium
Magnetism
Low temperature
Cryogenics
Magnetometer
Magnetisation
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
A way to obtain materials that show novel phenomena is to explore the interplay between geometry and interactions. When it is not geometrically possible to satisfy all the interactions by a given configuration, then to find the ground state becomes very complicated. This interplay between geometry and interactions defines geometrical frustration. One of the most popular examples of geometrical frustration in magnetism is spin ice. In this system, nearest neighbour ferromagnetic interactions between Ising spins in a pyrochlore structure emulate water ice by showing the same degree of frustration. This is manifested by the same ground state residual entropy. Although the clearest example of spin ice among magnets is shown by Dy₂Ti₂O₇, the behaviour of this material is richer than that of pure spin ice. The large magnetic moments of the rare earth Dy form a spin ice that also interacts via dipolar interactions. These long range interactions give rise to monopolar excitations which dramatically affect the dynamics of the system with respect to the pure spin ice case. In this thesis magnetisation experiments and numerical methods are used to explore the properties of the magnetic insulator Dy₂Ti₂O₇. We study its excitations at low temperature and describe the out-of-equilibrium characteristics of the magnetisation processes, below a temperature where the system freezes out. For temperatures above the freezing temperature, we describe and measure a 3D Kasteleyn transition and the concomitant Dirac strings associated to it, for the field in the [100] crystallographic direction. For temperatures below the freezing temperature, we find new out-of-equilibrium phenomena. Magnetic jumps are measured and their sweep rate dependence analysed. A deflagration theory is proposed and supported by simultaneous magnetisation and sample temperature measurements obtained by a new design of a Faraday magnetometer.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/3102

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter