The University of St Andrews

Research@StAndrews:FullText >
Biology (School of) >
Biology >
Biology Theses >

Please use this identifier to cite or link to this item:
This item has been viewed 19 times in the last year. View Statistics

Files in This Item:

File Description SizeFormat
MelinaLouizaKerouPhDThesis.pdf49.3 MBAdobe PDFView/Open
Title: Characterisation of proteins involved in CRISPR-mediated antiviral defence in Sulfolobus solfataricus
Authors: Kerou, Melina L.
Supervisors: White, Malcolm F.
Keywords: Sulfolobus solfataricus
Procaryotic antiviral defence
Issue Date: 20-Jun-2012
Abstract: One of the most surprising realisations to emerge from metagenomics studies in the early ‘00s was that the population of viruses and phages in nature is about 10 times larger than the population of prokaryotic organisms. Thus, bacteria and archaea are under constant pressure to develop resistance methods against a population of viruses with extremely high turnover and evolution rates, in what has been described as an evolutionary “arms race”. A novel, adaptive and heritable immune system encoded by prokaryotic genomes is the CRISPR/Cas system. Arrays of clustered regularly interspersed short palindromic repeats (CRISPR) are able to incorporate viral or plasmid sequences which are then used to inactivate the corresponding invader element via an RNA interference mechanism. A number of CRISPR-associated (Cas) protein families are responsible for the maintenance, expansion and function of the CRISPR loci. This system can be classified in a number of types and subtypes that differ widely in their gene composition and mode of action. This thesis describes the biochemical characteristics of CRISPR-mediated defense in the crenarchaeon Sulfolobus solfataricus. The process of CRISPR loci transcription and their subsequent maturation into small guide crRNA units by the processing endonuclease of the system (Cas6) is investigated. After this step, different pathways and effector proteins are involved in the recognition and silencing of DNA or RNA exogenous nucleic acids. This thesis reports the identification and purification of a native multiprotein complex from S. solfataricus P2, the Cmr complex, a homologue of which has been found to recognise and cleave RNA targets in P. furiosus. The recognition and silencing of DNA targets in E. coli has been shown to involve a multiprotein complex termed CASCADE as well as Cas3, a putative helicase-HD nuclease. S. solfataricus encodes orthologues for the core proteins of this complex, and the formation and function of an archaeal CASCADE is investigated in this thesis.
Other Identifiers:
Type: Thesis
Publisher: University of St Andrews
Appears in Collections:Biology Theses

This item is protected by original copyright

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


DSpace Software Copyright © 2002-2012  Duraspace - Feedback
For help contact: | Copyright for this page belongs to St Andrews University Library | Terms and Conditions (Cookies)