Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorDi Falco, Andrea
dc.contributor.authorPlaskocinski, Tomasz Tytus
dc.coverage.spatial191en_US
dc.date.accessioned2024-09-19T13:08:16Z
dc.date.available2024-09-19T13:08:16Z
dc.date.issued2025-06-30
dc.identifier.urihttps://hdl.handle.net/10023/30564
dc.description.abstractThrough optical trapping, we aim to replicate the ease and precision of macroscopic level manipulation, such as holding, observing, squeezing, rotating, and probing biological specimens in microfluidic environments. Optical beams access these environments through narrow apertures of bulky and expensive microscopic objectives. These limitations increase the complexity and cost of optical trapping, keeping it out of clinical settings. To address these constraints, this thesis presents a new biophotonic platform integrating nano- and micro-fabricated optical elements into the microfluidic environment. Arrays of custom parabolic micromirrors are rapidly patterned into glass using CO₂ laser ablation and used to form optical traps. Holographic metasurfaces, flat optical elements capable of arbitrary photonic response, operating in reflection and transmission are used to create optical traps with an equivalent efficiency to commercial microscope objectives. The metasurfaces are then used to generate photonic landscapes with multiple trapping sites without the need for diffractive optical elements. Very stable 15 x 15 um² square polymeric membranes are fabricated and decorated with handles for optical manipulation and mirrors. This creates a steerable, microscopic mirror, allowing full control over the delivery and collection of light around samples in the microfluidic chamber without the need for multiple microscope objectives. This is, in turn, used for refractive index sensing by selective planar excitation of a whispering gallery mode laser. This cross-disciplinary project bridges photonics, material sciences, and biology, enabling the adoption of advanced photonic designs in microfluidic environments, with transformative benefits for microscopy and biophotonic applications at the interface of molecular and cell biology.en_US
dc.language.isoenen_US
dc.relationXiao, J., Plaskocinski, T. T., Biabanifard, M., Persheyev, S., & Di Falco, A. (2023). On-chip optical trapping with high NA metasurfaces. ACS Photonics, 10(5), 1341-1348. https://doi.org/10.1021/acsphotonics.2c01986en
dc.relation
dc.relationPlaskocinski, T., Arita, Y., Bruce, G. D., Persheyev, S., Dholakia, K., Di Falco, A., & Ohadi, H. (2023). Laser writing of parabolic micromirrors with a high numerical aperture for optical trapping and rotation. Applied Physics Letters, 123(8), Article 081106. https://doi.org/10.1063/5.0155512en
dc.relation
dc.relationPlaskocinski, T. T., Yan, L., Schubert, M., Gather, M. C., & Di Falco, A. (2023). Optically manipulated micromirrors for precise excitation of WGM microlasers. Advanced Optical Materials, Early View, Article 2302024. Advance online publication. https://doi.org/10.1002/adom.202302024en
dc.relation
dc.relationBiabanifard, M., Plaskocinski, T. T., Xiao, J., & Di Falco, A. (2024). ZrO2 holographic metasurfaces for efficient optical trapping in the visible range. Advanced Optical Materials, Early View, Article 2400248. Advance online publication. https://doi.org/10.1002/adom.202400248en
dc.relation
dc.relationPhotonic Metasurfaces for Integrated Optical Trapping Applications (Software) Plaskocinski, T. T., University of St Andrews, 18 Sept 2024. DOI: https://doi.org10.17630/3bd2a243-71be-4667-b8ee-ded7be7e472een
dc.relation.urihttps://doi.org/10.1021/acsphotonics.2c01986
dc.relation.urihttps://doi.org/10.1063/5.0155512
dc.relation.urihttps://doi.org/10.1002/adom.202302024
dc.relation.urihttps://doi.org/10.1002/adom.202400248
dc.relation.urihttps://doi.org/10.17630/3bd2a243-71be-4667-b8ee-ded7be7e472e
dc.rightsCreative Commons Attribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOptical trappingen_US
dc.subjectMetasurfaceen_US
dc.subjectLab-on-chipen_US
dc.subjectWhispering gallery modeen_US
dc.subjectHolographic metasurfacesen_US
dc.subjectOptical manipulationen_US
dc.titlePhotonic metasurfaces for integrated optical trapping applicationsen_US
dc.typeThesisen_US
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en_US
dc.contributor.sponsorHorizon 2020 (Programme)en_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US
dc.identifier.doihttps://doi.org/10.17630/sta/1103
dc.identifier.grantnumber2458969en_US
dc.identifier.grantnumber819346en_US


The following licence files are associated with this item:

    This item appears in the following Collection(s)

    Show simple item record

    Creative Commons Attribution 4.0 International
    Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution 4.0 International