Interpolating between Hausdorff and box dimension
View/ Open
Date
28/11/2023Author
Funder
Grant ID
RPG-2019-034
Keywords
Metadata
Show full item recordAbstract
Hausdorff and box dimension are two familiar notions of fractal dimension. Box dimension can be larger than Hausdorff dimension, because in the definition of box dimension, all sets in the cover have the same diameter, but for Hausdorff dimension there is no such restriction. This thesis focuses on a family of dimensions parameterised by θ ∈ (0,1), called the intermediate dimensions, which are defined by requiring that diam(U) ⩽ (diam(V))ᶿ for all sets U, V in the cover.
We begin by generalising the intermediate dimensions to allow for greater refinement in how the relative sizes of the covering sets are restricted. These new dimensions can recover the interpolation between Hausdorff and box dimension for compact sets whose intermediate dimensions do not tend to the Hausdorff dimension as θ → 0. We also use a Moran set construction to prove a necessary and sufficient condition, in terms of Dini derivatives, for a given function to be realised as the intermediate dimensions of a set.
We proceed to prove that the intermediate dimensions of limit sets of infinite conformal iterated function systems are given by the maximum of the Hausdorff dimension of the limit set and the intermediate dimensions of the set of fixed points of the contractions. This applies to sets defined using continued fraction expansions, and has applications to dimensions of projections, fractional Brownian images, and general Hölder images.
Finally, we determine a formula for the intermediate dimensions of all self-affine Bedford–McMullen carpets. The functions display features not witnessed in previous examples, such as having countably many phase transitions. We deduce that two carpets have equal intermediate dimensions if and only if the multifractal spectra of the corresponding uniform Bernoulli measures coincide. This shows that if two carpets are bi-Lipschitz equivalent then the multifractal spectra are equal.
Type
Thesis, PhD Doctor of Philosophy
Rights
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Collections
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Related items
Showing items related by title, author, creator and subject.
-
Assouad type dimensions and dimension spectra
Yu, Han (University of St Andrews, 2019-12-03) - ThesisIn the first part of this thesis we introduce a new dimension spectrum motivated by the Assouad dimension; a familiar notion of dimension which, for a given metric space, returns the minimal exponent α ≥ 0 such that for ... -
Assouad dimension influences the box and packing dimensions of orthogonal projections
Falconer, Kenneth John; Fraser, Jonathan; Shmerkin, Pablo (2021) - Journal articleWe present several applications of the Assouad dimension, and the related quasi-Assouad dimension and Assouad spectrum, to the box and packing dimensions of orthogonal projections of sets. For example, we show that if the ... -
The vertical dimensions of the last ice sheet and late quaternary events in northern Ross-shire, Scotland
Reed, William J. (University of St Andrews, 1989) - ThesisDespite more than 100 years of research, surprisingly little is known about the precise dimensions of the last ice sheet in Northern Scotland, though recent work has suggested that it may have been much less ...