Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorLesurf, J. C. G.
dc.contributor.authorWebb, M. R.
dc.coverage.spatial186en_US
dc.date.accessioned2012-06-20T13:51:34Z
dc.date.available2012-06-20T13:51:34Z
dc.date.issued1993
dc.identifier.urihttps://hdl.handle.net/10023/2827
dc.description.abstractThe development of spatial signal processing techniques at millimetre wavelengths represents an area of science and technology that is new. At optical wavelengths, spatial signal processing techniques are well developed and are being applied to a variety of situations. In particular they are being used in pattern recognition systems with a great deal of success. At millimetre wavelengths, the kind of technology used for signal transport and processing is typically either waveguide based or quasi-optically based, or some hybrid of the two. It is the use of quasi-optical methods that opens up the possibility of applying some of the spatial signal processing techiques that up to the present time have almost exclusively been used at optical wavelengths. A generic device that opens up this dimension of spatial signal processing to millimetre wave quasi-optical systems is at the heart of the work described within this thesis. The device could be suitably called a millimetre wave quasi-optical spatial light modulator (8LM), and is identical in operation to the spatial light modulators used in many optical signal processing systems. Within this thesis both a theoretical and an experimental analysis of a specific millimetre wave quasi-optical spatial light modulator is undertaken. This thesis thus represents an attempt to open up this new area of research and development, and to establish for it, a helpful theoretical and experimental foundation. It is an area that involves a heterogeneous mix of various technologies, and it is an area that is full of potential. The development of the experimental method for measuring the beam patterns produced by millimetre wave quasi-optical spatial light modulators involved the separate development of two other components. Firstly, a sensitive, low-cost millimetre wave pyroelectric detector has been developed and characterised. And secondly, a high performance quasi-optical Faraday rotator (a polarisation rotator) has been developed and characterised. The polarisation state of a quasi-optical beam is the parameter most often exploited for signal processing applications in millimetre wave quasi-optical systems, and thus a high performance polarisation rotator has readily found many opportunities for use.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject.lccTK7868.S5W3
dc.subject.lcshPulse circuitsen_US
dc.subject.lcshPulse techniques (Electronics)en_US
dc.subject.lcshPulse generators--Mathematical modelsen_US
dc.titleMillimetre wave quasi-optical signal processing systemsen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


The following licence files are associated with this item:

  • Creative Commons

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
Except where otherwise noted within the work, this item's licence for re-use is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported