Show simple item record

Files in this item

Thumbnail

Item metadata

dc.contributor.advisorHay, Ron
dc.contributor.authorPinto Desterro, Maria Joana
dc.coverage.spatial204en_US
dc.date.accessioned2012-06-11T11:30:41Z
dc.date.available2012-06-11T11:30:41Z
dc.date.issued1999
dc.identifieruk.bl.ethos.506217
dc.identifier.urihttps://hdl.handle.net/10023/2724
dc.description.abstractIn unstimulated cells, the transcription factor NF-κB is held in the cytoplasm in an inactive state by IκB inhibitor proteins. Activation of NF--KB is mediated by signal induced degradation of IκBα via the ubiquitin proteasome-dependent pathway. Targeting the proteins for ubiquitin-mediated proteolysis is an irrevocable decision, and as such, the process needs to be highly specific and tightly regulated. This task is achieved by conjugation and deconjugation enzymes that act in a dynamic and coordinated mechanism. In a yeast two hybrid screen designed to identify proteins involved in IκBα signalling Ubch9 was found to interact with the N-terminal regulatory region of IκBα. Although Ubch9 is an enzyme homologous to E2 ubiquitin conjugating enzymes we have shown that is unable to form a thioester with ubiquitin but it is capable to form a thioester with the small ubiquitin-like protein SUMO- 1. To fully characterise the SUMO-1 modification reaction we have purified the proteins and cloned the genes encoding the SUMO-1 activating enzyme (SAEl/SAE2) and shown that it is homologous to enzymes involved in the activation of ubiquitin, Smt3p, the yeast SUMO-1 homologue, and Rublp/Nedd8, another ubiquitin-like protein. SUMO-1 is conjugated to target proteins by a pathway that is distinct from, but analogous to, ubiquitin conjugation. SUMO-1 was efficiently conjugated, both in vivo and in vitro, to IκBα on lysine 21, which is also utilised for ubiquitin modification. Thus, by blocking ubiquitination SUMO-1 modification acts antagonistically to generate a pool of IκBα resistant to proteasome-mediated degradation which consequently inhibits NF-κB dependent transcription activation. In view of several lines of similarity between NF-kB and p53, the involvement of SUMO-1 modification in the metabolism of the tumour supressor p53 was investigated. We have shown that p53 is modified by SUMO-1 at a single site, lysine 386 in the C-terminus of p53. Although p53 is regulated by ubiquitination, SUMO-1 and ubiquitin modification do not compete for the same lysine in p53. However, overexpression of SUMO-1 activates the transcriptional activity of wild type p53, but not K386R p53 where the SUMO-1 acceptor site has been mutated. A consensus sequence was obtained by comparison of the sequences surrounding the SUMO-1 acceptor lysine in proteins that have been shown to be modified by SUMO-1 and revealed a possible recognition site for SUMO-1 conjugation machinery. Tagging of proteins with SUMO-1 regulates transcriptional activation, either by interfering with subcellular location or with the ubiquitination pathway. The pathway may represent a novel target for drug development.en_US
dc.language.isoenen_US
dc.publisherUniversity of St Andrews
dc.subject.lccQH450.2D4
dc.subject.lcshGenetic transcriptionen_US
dc.subject.lcshGenetic codeen_US
dc.subject.lcshGenetic regulationen_US
dc.titleRole of SUMO-1 modification in transcriptional activationen_US
dc.typeThesisen_US
dc.type.qualificationlevelDoctoralen_US
dc.type.qualificationnamePhD Doctor of Philosophyen_US
dc.publisher.institutionThe University of St Andrewsen_US


This item appears in the following Collection(s)

Show simple item record