St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  •   St Andrews Research Repository
  • Biology (School of)
  • Biology
  • Biology Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gene and genome duplication in animal evolution

View/Open
Thesis-Madeleine-Aase-Remedios-complete-corrected-final.pdf (31.28Mb)
Thesis-Madeleine-Aase-Remedios-complete-corrected-final.docx (65.17Mb)
Date
06/2023
Author
Aase-Remedios, Madeleine Emma
Supervisor
Ferrier, David Ellard Keith
Funder
University of St Andrews. School of Biology
University of St Andrews. St Leonard's College
Keywords
Evolution
Developmental biology
Gene duplication
Genomes
Bilaterians
Bioinformatics
Myogenesis
Homeobox genes
Hox
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Gene and genome duplications have an important role in evolution as a mechanism that creates novel genetic material. Paralogues created by duplication can diversify in function and contribute to the complexity of genetic networks, especially in the context of the gene regulation and signalling pathways that control animal development. Clusters of related genes that have arisen by tandem duplication illustrate the role of regulatory elements in preserving synteny by constraining gene neighbourhoods. Whole genome duplications have occurred on the stems of lineages characterised by the evolution of novel structures, adaptations to different environments, and species diversity. Here, I aim to understand how gene and genome duplications have impacted specific developmental gene families and processes throughout animal evolution with a comparative genomics approach. I make use of genomic resources from phylogenetically informative lineages, including new genomes of early-branching chordates, spiralians, and ecdysozoans. I have examined the impact of the vertebrate two rounds of whole genome duplication on chordate muscle development including the highly conserved family of myogenic regulatory factors and muscle gene expression. I have also investigated the evolution of homeobox gene families, with a focus on clusters of genes found across bilaterians, and specifically focus on the Hox cluster. With phylogenetic and synteny analyses, I found that a tandem duplication underpins the origin of two vertebrate muscle gene types. I examined the impact of whole genome duplication on a diversity of genes encoding proteins in a highly conserved signalling pathway in muscle, and I surveyed and revised the hypotheses for the evolution of homeobox genes across the bilaterians. In doing so, I have also generated a large resource of genomic annotations and protein sequences to facilitate functional studies in the future. These findings not only have identified certain duplications that have underpinned certain known instances of subfunctionalisation among paralogues, but also indicate gene families to target for future study.
DOI
https://doi.org/10.17630/sta/338
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2027-12-20
Embargo Reason: Thesis restricted in accordance with University regulations. Restricted until 20th December 2027
Collections
  • Biology Theses
URI
http://hdl.handle.net/10023/27152

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter