St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

A study of brown dwarf and star formation in NGC 2264

Thumbnail
View/Open
Thesis-Samuel-Pearson-complete-version.pdf (41.26Mb)
thesis_template_2021.tex (16.63Kb)
Date
29/11/2022
Author
Pearson, Samuel
Supervisor
Scholz, Aleks
Funder
Science and Technology Facilities Council (STFC)
Keywords
Brown dwarfs
Star formation
NGC 2264
Astronomy
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
Brown dwarfs are substellar objects intermediate between stars and planets that are not massive enough to sustain stable hydrogen fusion (<75M[sub](Jup)). They are a natural outcome of the processes that lead to the formation of stars and planets, and we find them in abundance in every environment we have searched with sufficient depth. Brown dwarfs are not rare; we find a brown dwarf for every 2 -- 5 stars, equating to tens of billions across the Milky Way. However, despite their prevalence, the inherent faintness of brown dwarfs makes studying them challenging. Many fundamental questions about these objects therefore remain unanswered, key among them: how do brown dwarfs form? The overall aim of this thesis has been to work towards this question and better understand the formation of brown dwarfs. To achieve this goal, my research has focused on brown dwarf and star formation in the young cluster, NGC 2264. The aim of studying this cluster was to build the large and well characterised sample of young brown dwarfs needed to answer the outstanding questions in the field of brown dwarf formation. Although NGC 2264 is more distant than the nearest star forming regions, I have shown that it is still accessible for detailed spectroscopic observations of young substellar objects, and crucially has the much larger population that is needed to achieve a robust statistical analysis of the key tracers of brown dwarf formation. I have identified 448 brown dwarf candidates in NGC 2264, based on a combination of NIR colours and additional signatures of youth. I have utilised follow up spectroscopy to show this selection method significantly improves selection efficiency. I find that the star-to-brown dwarf ratio and the slope of the substellar mass function for NGC 2264 are consistent with other young clusters, which points to a uniform IMF across a diverse range of star forming environments. I find no evidence for a variation in the star-to-brown dwarf ratio due to stellar surface density or the presence of OB stars. This rules out brown dwarf formation scenarios that predict strong variations in the relative frequency of brown dwarfs due to environmental conditions. Using Gaia EDR3 kinematics and photometry, I have selected a clean sample of 664 NGC 2264 stellar cluster members and divided these members into north and south sub-clusters using a K-means clustering algorithm. Through comparison with isochrones I have shown that the average age of the northern sub-cluster is ~1 Myr younger than the southern sub-cluster. Using MIR Spitzer data I have classified the disc morphology of the cluster members, based on the slope of their infrared excess. I have shown that despite the younger age of the northern sub-cluster the disc fraction is approximately the same for both the north and south (~ 40%). I attribute this dearth of northern discs to photoevaporation from S Mon, which contains a massive O7 type star - the only O type star in NGC 2264. I have shown that there is a reduction in the local disc fraction up to 1.5 pc away from S Mon, implying that O type stars have a significant and far reaching impact on the local disc lifetime.
DOI
https://doi.org/10.17630/sta/256
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/26898

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter