St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  •   St Andrews Research Repository
  • Earth & Environmental Sciences and Geography & Sustainable Development (Schools of)
  • School of Earth & Environmental Sciences
  • Earth & Environmental Sciences Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbon and sulfur isotope biosignatures in Mars-analogue hydrothermal environments

Date
21/06/2022
Author
Moreras Martí, Arola
Supervisor
Cousins, Claire Rachel
Zerkle, Aubrey L.
Funder
UK Space Agency
Science and Technology Facilities Council (STFC)
Grant ID
111RESEES003
Metadata
Show full item record
Altmetrics Handle Statistics
Altmetrics DOI Statistics
Abstract
The study of terrestrial environments that bear similarity to Mars provides valuable information for interpreting data from missions, including how to find evidence of relict life on the red planet. Stable isotope signatures evidencing microbial metabolic activity are commonly used as a biosignature tool. Here, an interdisciplinary study investigating two volcanic hydrothermal systems in Iceland is presented, with additional contextualisation through a comparison with a non-volcanic hypersaline spring. This thesis combines mineralogy, geochemistry, microbial community DNA, and stable isotope systems (carbon and sulfur) to analyse: i) the preservation of isotopic biosignatures in hydrothermal and hypersaline springs, and ii) the relationships between the biosignatures and the geochemistry of these environments. Firstly, a characterisation of two Mars analogue hydrothermal environments in Iceland (Kerlingarfjöll and Kverkfjöll), reveals deep volcanic processes controlling the geochemistry of the hydrothermal pools. The volcanic processes create two very distinct pH environments, with Kerlingarfjöll circum-neutral and Kverkfjöll acidic, with distinct water geochemistry and mineralogy. The water geochemistry is found to be a key parameter controlling the microbial communities, based on pH differences and the different electron donors and acceptors available. Secondly, carbon isotope fractionations preserved as sedimentary organic carbon, are controlled in Kerlingarfjöll and Kverkfjöll systems by temperature. Low temperature pools favour carbon CO₂ fixation pathways that produce larger or more variable carbon isotope fractionations. Lastly, sulfur isotope values (δ³⁴S) recorded in the sediments are not conclusive as geochemical biosignatures in Kerlingarfjöll and Kverkfjöll sediments. This is due to abundant H2S with abiotic δ³⁴S values overwhelming biological δ³⁴S values. Conversely, when combining δ³⁴S with Δ³³S and Δ³⁶S as a Quadruple Sulfur Isotope system (QSI), two pools in Kerlingarfjöll show complex S-cycling combining biological and volcanic processes. Importantly, the non-volcanic hypersaline spring preserves larger fractionations in δ³⁴S and large Δ³³S values, typical of reduction and disproportionation of sulfur by microorganisms. The main environmental variables causing larger S isotope fractionations in the hypersaline spring are the salinity stress and the limitation of electron donors and acceptors in the environment. Overall, this thesis improves the understanding of carbon and sulfur isotopes as biosignature tools for investigating hydrothermal and hypersaline environments in Mars, and opens the door for the use of QSI as a more robust biosignature for future missions.
DOI
https://doi.org/10.17630/sta/250
Type
Thesis, PhD Doctor of Philosophy
Rights
Embargo Date: 2022-02-16
Embargo Reason: Thesis restricted in accordance with University regulations. Restricted until 16th February 2022. Restriction now expired. Awaiting final permissions to release or further restrict full text.
Collections
  • Earth & Environmental Sciences Theses
URI
http://hdl.handle.net/10023/26844

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter