St Andrews Research Repository

St Andrews University Home
View Item 
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  •   St Andrews Research Repository
  • Physics & Astronomy (School of)
  • Physics & Astronomy
  • Physics & Astronomy Theses
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The electronic structure of the nematic materials Sr₃Ru₂O₇ and Ca(Co[subscript(x)]Fe[subscript(1-x)])₂As₂

Thumbnail
View/Open
MilanAllanPhDThesis.pdf (32.26Mb)
Date
22/11/2010
Author
Allan, Milan P.
Supervisor
Baumberger, Felix
Davis, J. C. Séamus
Mackenzie, Andrew
Metadata
Show full item record
Altmetrics Handle Statistics
Abstract
We investigated the electronic structure of the two nematic materials Sr₃Ru₂O₇ and Ca(Fe₀.₉₇Co₀.₀₃As)₂ using spectroscopic – imaging scanning tunneling microscopy (SI-STM) and angle resolved photoemission spectroscopy (ARPES). – – – Sr₃Ru₂O₇ is an itinerant metamagnet that shows a putative quantum critical endpoint at 8 Tesla, submersed by the formation of a nematic electronic phase. Using ARPES, we identified at least 5 Fermi pockets in agreement with quantum oscillation measurements. Surprisingly, we found Fermi velocities up to an order of magnitude lower than in single layer Sr₂RuO₄ and up to 35 times lower than predicted by ab initio calculations. Many bands are confined in an energy range of only ∼10 meV below the Fermi level. This, as well as distinct peak-dip-hump shapes of the spectra with a characteristic energy of around ∼5 meV indicate strong correlations and a possible nontrivial mechanism that is absent in single layer Sr₂RuO₄ and connected to the nematicity. The quasiparticle interference of one of the bands was detected by SI-STM, which was also used to measure subatomic features with the symmetries of the relevant Ru d orbitals. – – – In the second mate- rial, the iron-based high-temperature superconductor Ca(Fe[subscript(1-x)]Co[subscript(x)]As)₂, we discovered electronic nematic nano-pattern in its under-doped ‘parent’ state. We spectroscopically imaged this state in real space over large areas and across domain boundaries that change the directionality of the nano-pattern by 90°. We propose that oriented, dimer-shaped electronic nematogens are responsible for this pattern, in striking contrast to what has been expected and observed in electronic nematic materials. The dimers consist of two Gaussian conductance peaks separated by about 8 a[subscript(FeFe)]. Unidirectionality also shows in the quasiparticle interference pattern of the delocalized electrons. The dispersion is in agreement with scattering from the α₂ band discovered by ARPES but has distinct C₂ symmetry, not inconsistent with a C₄-symmetric band scattered by the proposed dimers.
Type
Thesis, PhD Doctor of Philosophy
Collections
  • Physics & Astronomy Theses
URI
http://hdl.handle.net/10023/2610

Items in the St Andrews Research Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

Advanced Search

Browse

All of RepositoryCommunities & CollectionsBy Issue DateNamesTitlesSubjectsClassificationTypeFunderThis CollectionBy Issue DateNamesTitlesSubjectsClassificationTypeFunder

My Account

Login

Open Access

To find out how you can benefit from open access to research, see our library web pages and Open Access blog. For open access help contact: openaccess@st-andrews.ac.uk.

Accessibility

Read our Accessibility statement.

How to submit research papers

The full text of research papers can be submitted to the repository via Pure, the University's research information system. For help see our guide: How to deposit in Pure.

Electronic thesis deposit

Help with deposit.

Repository help

For repository help contact: Digital-Repository@st-andrews.ac.uk.

Give Feedback

Cookie policy

This site may use cookies. Please see Terms and Conditions.

Usage statistics

COUNTER-compliant statistics on downloads from the repository are available from the IRUS-UK Service. Contact us for information.

© University of St Andrews Library

University of St Andrews is a charity registered in Scotland, No SC013532.

  • Facebook
  • Twitter